Al and Compex Dynamical Systems

G. P. Tsironis

Department of Physics, University of Crete, Greece

Complex systems

Nonlinear systems

Chaos

Chaos

$$
\begin{array}{r}
\frac{d x}{d t}=\sigma(y-x) \\
\frac{d y}{d t}=x(\rho-y)-y \\
\frac{d z}{d t}=x y-\beta z
\end{array}
$$

${ }^{4}$

Figure 1: The Lorenz (strange) attractor is a surface with fractal Hausdorff dimension equal to 2.0627160 , i.e. it slightly larger than 2. A trajectory that on this attractor moves continuously between the two lobes without a predictable character. In this figure $\rho=28.0, \sigma=10.0$ and $\beta=8.0 / 3.0$

The DNLS equation

$$
i \frac{d \psi_{n}}{d t}=\epsilon_{n} \psi_{n}+V\left(\psi_{n-1}+\psi_{n+1}\right)-\chi_{n}\left|\psi_{n}\right|^{2} \psi_{n}
$$

Kalosakas et al (1999)

Scott (1992)

Optical fibers and DNLS

Waveguide array

Eisenberg et al (2000)

Schwartz et al (2007)

The nonlinear dimer

Integrable in terms of elliptic functions

Seltrapping transition

intial condition effects in the evolution of a nonlinear dimer *

Dear

$$
p(t)=\mathrm{cn}\left(2 V t, \frac{\chi}{4 V}\right) \text { for } \chi \leq 4 V
$$

$$
p(t)=\operatorname{dn}\left(\frac{\chi^{t}}{2}, \frac{4 V}{\chi}\right) \text { for } \chi \geq 4 V
$$

$$
T=\frac{2 K(k)}{V}=\frac{2}{V} \int_{0}^{1} \frac{d z}{\sqrt{1-z^{2}} \sqrt{1-k^{2} z^{2}}} .
$$

Jacobian elliptic functions

$\operatorname{cd}(z \mid 0)=\cos (z) \quad \operatorname{cd}\left(\left.z+\frac{\pi}{2} \right\rvert\, 0\right)=-\sin (z) \quad \operatorname{cd}(z \mid 1)==1$ $\operatorname{cn}(z \mid 0)=\cos (z) \quad \operatorname{cn}\left(\left.z+\frac{\pi}{2} \right\rvert\, 0\right)=-\sin (z) \quad \operatorname{cn}(z \mid 1)=\operatorname{sech}(z)$ $\operatorname{cs}(z \mid 0)=\cot (z) \quad \operatorname{cs}\left(\left.z+\frac{\pi}{2} \right\rvert\, 0\right)=-\tan (z) \quad \operatorname{cs}(z \mid 1)=\operatorname{csch}(z)$ $\operatorname{dc}(z \mid 0)=\sec (z) \quad \mathrm{dc}\left(\left.z+\frac{\pi}{2} \right\rvert\, 0\right)=-\csc (z) \quad \operatorname{dc}(z \mid 1)=1$ $\operatorname{dn}(z \mid 0)=1 \quad \operatorname{dn}(z \mid 1)=\operatorname{sech}(z) \quad \operatorname{dn}\left(\left.z+\frac{\pi i}{2} \right\rvert\, 1\right)=-i \operatorname{csch}(z)$ $\mathrm{ds}(z \mid 0)=\csc (z) \quad \mathrm{ds}\left(\left.z+\frac{\pi}{2} \right\rvert\, 0\right)=\sec (z) \quad \mathrm{ds}\left(\left.z+\frac{\pi i}{2} \right\rvert\, 1\right)=-i \operatorname{sech}(z)$ $\mathrm{nc}(z \mid 0)=\sec (z) \quad \mathrm{nc}\left(\left.z+\frac{\pi}{2} \right\rvert\, 0\right)=-\csc (z) \quad \mathrm{nc}(z \mid 1)==\cosh (z)$ $\operatorname{nd}(z \mid 0)=1 \quad \operatorname{nd}(z \mid 1)=\cosh (z) \quad \operatorname{nd}\left(\left.z+\frac{\pi i}{2} \right\rvert\, 1\right)=i \sinh (z)$ $\mathrm{ns}(z \mid 0)=\csc (z) \quad \mathrm{ns}\left(\left.z+\frac{\pi}{2} \right\rvert\, 0\right)=\sec (z) \quad \mathrm{ns}(z \mid 1)=\operatorname{coth}(z)$ $\operatorname{sc}(z \mid 0)=\tan (z) \quad \operatorname{so}\left(\left.z+\frac{\pi}{2} \right\rvert\, 0\right)=-\cot (z) \quad \operatorname{sc}(z \mid 1)=\sinh (z)$ $\operatorname{sd}(z \mid 0)=\sin (z) \quad \operatorname{sd}\left(\left.z+\frac{\pi}{2} \right\rvert\, 0\right)=\cos (z) \quad \operatorname{sd}(z \mid 1)=\sinh (z)$ $\operatorname{sn}(z \mid 0)=\sin (z) \quad \operatorname{sn}\left(\left.z+\frac{\pi}{2} \right\rvert\, 0\right)=\cos (z) \quad \operatorname{sn}(z \mid 1)==\tanh (z)$.

$$
\begin{aligned}
& \operatorname{sn}(u)=\frac{2 \pi}{K \sqrt{m}} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1-q^{2 n+1}} \sin ((2 n+1) v) \\
& \operatorname{cn}(u)=\frac{2 \pi}{K \sqrt{m}} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}} \cos ((2 n+1) v) \\
& \operatorname{dn}(u)=\frac{\pi}{2 K}+\frac{2 \pi}{K} \sum_{n=1}^{\infty} \frac{q^{n}}{1+q^{2 n}} \cos (2 n v)
\end{aligned}
$$

