
G.  P. Tsironis

AI and Compex Dynamical Systems

Department of Physics, University of Crete, Greece

Lecture 1, Friday 18 February 2022



Complex systems

Metals
Proteins



Nonlinear systems

Chaos Solitons Fractals 

Sensitive dependence on initial conditions Coherent propagation Non-integer dimensional spaces



Chaos



The DNLS equation



Holstein polaron and solitons in biomolecules

9Kalosakas et al  (1999)

Scott (1992)



Optical fibers and DNLS

10

Eisenberg et al (2000)

Schwartz et al (2007)



BEC

11

Bloch (2005)



The nonlinear dimer

Integrable in terms of elliptic functions



Seltrapping transition
PHYSICAL REVIE% S VOLUME 34, NUMBER 7 1 OCTOBER 19S6

Self-trapping on a dimer: Time-dependent solutions
of a discrete nonlinear Schrodinger equation
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From the discrete nonlinear Schrodinger equation describing transport on a dimer we derive and
solve a closed nonlinear equation for the site-occupation probability difference. Our results, which
are directly relevant to specific experiments such as neutron scattering in physically realizable di-
mers, exhibit a transition from "free" to "self-trapped" behavior and illustrate features expected
in extended systems, including soiiton/polaron bandwidth reduction and the dependence of
energy-transfer efficiency on initial conditions.

The discrete nonlinear Schrodinger equation, which de-
scribes a number of phenomena in condensed matter, non-
linear optics, and other fields of physics, ' may be written
quite generally as

dc (t)/dt iV(—c~+(+c~ ))+iX~c~ ~'c, (1)
where c is the amplitude for the system to be in state
( m), V is the interstate matrix element [assumed "nearest
neighbor" in (I)] describing the linear evolution among
the states ) m), and X is the nonlinearity parameter. In the
specific system of an electron or exciton in a crystal in-
teracting strongly with phonons or vibrations, ~

m ) denotes
the (localized) Wannier state centered on site m, V is pro-
portional to the bandwidth of the bare electron or exciton,
and X is the energy lowering due to polaronic effects.
Equation (1) or similar equations have been written

down or derived by a variety of people in a variety of con-
texts. ' 7 While solutions for its continuum limit are well
known, analytical solutions for the discrete chain are not
known. We present here exact analytical time dependent-
solutions for (1) for the case of a dimer, i.e, when m can
take on values 1 and 2 only. Although easy to arrive at
mathematically, the solutions are rich in physical insight.
In particular, they illustrate explicitly a transition from
free particle motion to self-trapping, dynamic energy
mismatch, polaron/soliton bandwidth reduction, and other
expected and conjectured features of the evolution
described by (1) for extended systems. They also comple-
ment and extend the previous phase plane analysis. 6 Fur-
ther, far from being an idealized system, the dimer is both
interesting in its own right and attainable experimental-
ly. s 'o A well-known example in the field of energy
transfer is the "stick dimer" consisting of a variable dis-
tance donor-acceptor system. Poly-L-proline oligomers of
controllable length are used to separate an a-naphthyl
group at the carboxyl end—the donor —from the dansyl
group at the imino end—the acceptor—and the efficiency
of energy transfer is studied through measurements of
fluorescence excitation, emission, and polarization spec-
tra. Another similar example in the field of energy
transfer consists of excited dimers in aromatic hydrocar-

+t ~(pmm pnn )pmn (2)

provided X is assumed real. A linear chain with varying
site energies would obey (2) with the replacement of the
final term if(p —p )p „by the energy mismatch term—i(E —E„)p „,where E is the site energy at m. The
effective dynamic energy lowering —Xp, which equals
the product of X and the probability of occupation of site
rn, is thus completely evident in (2). From the special case
of (2) for the dimer, a straightforward calculation consist-
ing of the exact elimination of p~2 and pzt leads to an ex
plicit, closed nonlinear equation for the probability differ-
ence p(t ) pt t —pzz.
d p/dt Ap —Bp
A (Xa/2)p —4V —2VX(p, +p ), 8 (Z /2) . (4)

Here the subscript 0 denotes the initial value (at t -0)."
In the absence of the nonlinearity, i.e., for X 0, the coeffi-
cient A equals —4V, 8 vanishes, and the probability
difference p oscillates sinusoidally. In the presence of the
nonlinearity, however, the behavior is profoundly different
and quite rich as we shall see below.
Considering first the simple initial condition that only

bon crystals such as 1, 2, 4, 5—tetrachlorobenzene, '0 stud-
ied with microwave probes via optically detected magnetic
resonance. Dimers, more generally systems of small size,
occur" also in the study of the motion of trapped hydrogen
atoms among states associated with impurity atoms such
as those of oxygen in metals (e.g., niobium). The motion
of hydrogen atoms is studied in these systems with the help
of quasielastic neutron scattering. " Calculations for di-
mer observables are therefore not merely pedagogical in
nature but have direct significance in experiments.
To relate our results to previous studies of transport on

molecular crystals and aggregates, ' we first derive from
(1) the corresponding Liouville-Von Neumann equation
for the density matrix elements p „. It is trivial to show
that (1) and its complex conjugate give

dpmnldt tV(pm+In+pm —In pmn+1 pmn —I)
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one of the two sites is occupied initially, we see that pn 1

(or —1), the off-diagonal elements of the density matrix
are zero initially, and (4) reduces to

Equation (3) with (5) has two completely different solu-
tions according to the value of Z/4V. For O~Z/4V (1,
the probability difference displays oscillations about the
value 0, represents complete transfer from one site to the
other, and is given by

p(r ) cn(2Vt i k X/4V),
whereas, for Z/4V & 1, the probability difference oscillates
only on one side of 0, represents incomplete intersite
transfer, i.e., relative trapping as would be characteristic
of an energy mismatch, and is explicitly given by

p(t) -dn( ,'Zt ) k —4V/Z),
where k is the respective elhptic parameter of the Jacobian
elliptic functions cn and dn. There is thus a transition at
X 4V between free particle transport and self-trapping of
the particle.
The evolution of the probabilities and the transition are

shown in Fig. 1. Starting with Z 0, we see that the parti-
cle oscillates between the two sites with period n/V. As Z
increases, the oscillations of the particle begin to depart
from trigonometric behavior. They follow the cn function
which, for small Z/4 V, can be approximated by
[cosM+(k /4)(sinu)(u -sinu cosu)] with u 2Vr,
k Z/4V [see curve (a) of Fig. 1]. The en function is
periodic with interval

pa/2
4&(k )=4 J db(I —kzsinzt))

Q

Therefore, the period of the oscillations of the particle is
T 2K(k)/V. It increases as X/4V increases and, for
small Z/4V, may be expressed as T (x/V)[1+(I/2n)

x (Z /16V )]. As Z approaches very close to 4V, the oscil-
lations of the particle show a marked departure from tri-
gonometric behavior. The cn function can now be approxi-
mated by

[sech(u )—(—,' )(1—k )(tanhu sechu )(sinhu coshu —u )]
with u -2Vt, k Z/4V [see curve (b) of Fig. 1]. The
period of the en function becomes enormous as the particle
oscillates sluggishly between the two sites. The logarith-
mic approximation to K(k) is appropriate here and the
period of the oscillations of the particle is given by
T (1/V) ln [16/[I —(Z2/16V2)]].
The motion of the particle between the two sites for

Z & 4V described above and depicted in curves (a) and (b)
of Fig. 1 is characteristic of free particle behavior. When
Z equals 4V, the equahzation of the probabilities of the two
sites follows exactly the sech evolution:

p (t ) sech(2Vt ) sech(Xr/2),
and the period of the oscillation is infinite. This is the
transition between free behavior and self-trapped
behavior, and it corresponds to curve (c) of Fig. 1.
As Z increases beyond the transition, the oscillations are

described by the dn function [see (7)]. In this region, for Z
not too different from 4V, it can be approximated by
[sech(u) (—,' )(1—kz)(tanhu sechu)(sinhu coshu+u)]
with u Zr/2, k 4V/Z [see curve (d) of Fig. 1]. In this
region, the probability difference never crosses 0. Increas-
ing Z has now two effects: The amplitude of the os-
cillations decreases and the period also decreases. Near
the transition, the period may be written as T (4/Z)
min[16/[I —(16V/Z )B. Far away from the transition,
as Z/4V approaches infinity, the oscillations follow a trig-
onometric evolution, i.e., can be approximated by

p(t ) -1—(8V'/Z') sin'(Zt/2) .

This is precisely the evolution of the probability difference
in a linear dimer with a true energy mismatch: The ampli-
tude decreases with an increase in the amount of the ener-
gy mismatch. The period of the oscillations is T 2m/X.
This self-trapped particle behavior is depicted in curves
(d) and (e) of Fig. 1. In the limit as Z/4V tends to infinity,
the particle is entirely self-trapped as the amplitude (and
also the period) of the oscillations becomes zero.
It is instructive to study the potential curves correspond-

ing to (3). With the convention that [dp(t)/d ]r+U(p)
constant, we have

U(P ) -(a/2)f '-~I' . (10)

0 10
2Vt

20 30

FIG. 1. The difference in the probabilities of occupation of
the taro sites in a dimer plotted as a function of tiroe t for various
values of (Z/4V): (a) 0.9S, (b) 0.999S, (c) 1, (d) 1.0001, (c)
1.7S. Curves (a) and (b) are indicative of free particle motion,
(c) describes the transition, and (d) and (e) represent self-
trapping behavior [see Eqs. (6) and (7)l.

The condition for the double minima to appear is A ~0,
i.e., X ~8V . The condition for the transition from free to
self-trapped behavior to occur is, however, Z ~ 16V . This
condition corresponds graphically to the value of U(p ) at
the starting point (p = + 1) becoming equal to its value at
the central extremum (the maximum at p 0), i.e.,U(~1) -U(0).
In the sma11 polaron literature' ' ' ' the carrier-

phonon interaction (which gives rise to Z) is said to reduce
the effective bandwidth of the carrier from V to V,ff (we
suppress the constant factor which is 4 for an infinite
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p(t ) -Ccn [(CX/2k)(t —tu) ~
k]

-Cdn [(CX/2)(i —t.) ] 1/k],
I/k'-2+ (1/C') [(4V/X)'

(12)

+ (8V/X) (pz~+ p~2)o —2po ], (13)
the cn and dn in (12) being related to each other via the
Jacobi reciprocal transformation, and to and C being arbi-
trary constants determined by the initial values of p and
dp/dt The explici. t dependence of the effective velocity or
frequency on the initial state is clear from (13).

linear chain and 2 for a dimer). The reduced polaron
bandwidth V,tt is typically written as Ve, where S is the
"Franck-Condon overlap factor" and is proportional to the
square of the carrier-phonon interaction. This reduction,
which represents a 1ovvering of the velocity of the carrier,
while an integral and important part of the analysis of
Holstein' and of that of a number of other workers3 ' '"
in the field, does not appear to be present in the treatment
of Davydov. The question of whether it is or is not a
natural consequence of the discrete nonlinear Schrodinger
equation is thus an important one. Our analysis above
shows explicitly that such a reduction does indeed occur, at
least for the dimer. We define V,tt as the value of the in-
tersite matrix element V required in a linear dimer (X 0)
to result in the same period of intersite oscillations of the
probability as the period in the nonlinear dimer. The ef-
fective bandwidth thus drops off sharply at the transition
as the reciprocal of a logarithm:

Vgff V[2/tr)K(X/4V)]
= V[n/In[16/I -(X'/16V')]] .

The approximate equality [the second relation in (13)]
holds only near the transition. The dependence of the ef-
fective bandwidth (or velocity) over the entire free particle
range is plotted in Fig. 2.
The detailed discussion above is based on the initial con-

dition that the particle occupies one of the two sites com-
pletely at t 0, i.e., on (5). The solution for arbitrary ini-
tial condition, wherein A is given by (4), can be written
formally as

p0
x«v

1.P

FIG. 2. The ratio of the effective bandwidth for motion be-
tween the dimer sites to the bare bandwidth plotted as a function
of (X/4V) showing a logarithmic reduction near the transition
[see Eq. (11)].
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General investigations such as the study of self-trapping
for delocalized initial conditions, and the explicit reduc-
tion of the time-dependent solutions presented here to sta-
tionary solutions6 for the dimer, can be carried out easily
from (12) and (13). Space does not permit us to remark
in detail on them or on the interesting results that have
emerged'5 from the application of the dimer analysis to ex-
periments such as neutron scattering and fluroescence
depolarization in physically realizable systems. Those
considerations will be reported elsewhere. '

In summary, we have derived a closed nonlinear equa-
tion for the time dependence of the probability difference
p(t) p~~(t) —pz2(t) and demonstrated that its exact
solutions exhibit (i) the transition from free to self-trapped
behavior, (ii) the effective energy mismatch resulting from
the nonlinearity in an equation which is otherwise transla-
tionally invariant, (iii) the reduction of the solitonic/polar-
onic bandwidth, i.e., of the effective velocity or frequency
of the carrier, and (iv) the explicit dependence of the ef-
fective velocity or frequency on the initial state, which is
an exclusive characteristic of nonlinear evolution.
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