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Background: The analysis of COVID-19 infection data through the eye of Physics-inspired Artificial Intelligence leads
to a clearer understanding of the infection dynamics and assists in predicting future evolution. The spreading of the
pandemic during the first half of 2020 was curtailed to a larger or lesser extent through social distancing measures
imposed by most countries. In the context of the standard Susceptible-Infected-Recovered (SIR) model, changes in
social distancing enter through time-dependent infection rates.

Methods: In this work we use machine learning and the infection dynamical equations of SIR to extract from the
infection data the degree of social distancing and, through it, assess the effectiveness of the imposed measures.

Results: Quantitative machine learning analysis is applied to eight countries with infection data from the first viral
wave. We find as two extremes Greece and USA where the measures were successful and unsuccessful, respectively,
in limiting spreading. This physics-based neural network approach is employed to the second wave of the infection,
and by training the network with the new data, we extract the time-dependent infection rate and make short-term
predictions with a week-long or even longer horizon. This algorithmic approach is applied to all eight countries with
good short-term results. The data for Greece is analyzed in more detail from August to December 2020.

Conclusions: The model captures the essential spreading dynamics and gives useful projections for the spreading,
both in the short-term but also for a more intermediate horizon, based on specific social distancing measures that are
extracted directly from the data.

Keywords: COVID-19; physics-informed machine learning; SIR; time-dependent infection rate; short-term predictions

Author summary: This work combines machine learning techniques with mathematical models known in
epidemiology, enabling the extraction of COVID-19 infection information in different countries. This approach controls
the data-driven information and shows how various measures and practices in each country are directly reflected in the
infection data. The use of machine learning, especially neural networks, allows the extraction of the time-dependent
infection rate that drives the evolution of the pandemic in each country. Knowledge of the time-dependent infection rate
allows short-term predictions with a week-long or even longer horizon.

INTRODUCTION “hesitant” approach, most countries essentially adopted
social distancing rules that originated in China. Several
The COVID-19 pandemic started in December 2019 and countries delayed the imposition of measures and, as a

subsequently spread fast in the world. After an initial result, saw large numbers of infected persons and
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deaths. Other countries acted very swiftly and managed
to control the infected numbers and especially the mode
of spreading. There was an initial discussion related to
“herd immunity” that was in part attempted by some
countries, but soon the basic global approach was that
introduced by China, i.e. social distancing. However, the
degree and swiftness of social distancing were different
in each country; in Italy and Spain, for instance, there
was an initial delay while Greece acted very quickly and
with strong measures. The control of the epidemic has
been the main subject in many studies, and several kinds
of epidemic models have been used to address the
question of how control measures could limit the
pandemic growth. Hufnagel et al. [1] introduced a
stochastic model where stochastic local infection
dynamics among individuals were combined with
stochastic transport in a worldwide network, taking into
account national and international civil aviation traffic.
Different control strategies were analyzed concluding
that a quick and focused reaction is essential to
inhibiting the global spread of epidemics. Baker et al.
[2] used a climate-dependent epidemic model to
simulate the SARS-CoV-2 pandemic by probing
different scenarios based on known coronavirus biology.
They found that without effective control measures,
strong outbreaks are likely in more humid climates and
summer weather will not substantially limit pandemic
growth. Qui et al. [3] used an empirical model to
quantify the impact of social and economic factors on
the transmission of coronavirus disease in China.
Ardabili et al. [4, 5] presented a comparative analysis of
machine learning and soft computing models to predict
the COVID-19 outbreak as an alternative to Susceptible
—Infected—Recovered (SIR) and Susceptible-Exposed-
Infectious-Removed (SEIR) models. Pinter et al. [6]
proposed hybrid machine learning methods of adaptive
network-based fuzzy inference system and multi-layered
perceptron-imperialist competitive algorithm to predict
time series of infected individuals and mortality rates.
Ramon Gomes da Silva et al. [7] used several machine
learning methods including Bayesian regression neural
network, cubist regression, k-nearest neighbors, quantile
random forest, and support vector regression, coupled
with climatic exogenous variables to forecast the
COVID-19 cases in five Brazilian and American states.
More sophisticated SIR-type models were also used in
predicting the evolution of the COVID-19 pandemic.
Zhao and Chen [8] used a Susceptible, Un-quarantined
infected, Quarantined infected, Confirmed infected
(SUQC) model for modeling the epidemic dynamics and
control of COVID-19 in China. A spatio-temporal SEIR-
type model including categories for N age and sex
groups in M different spatial locations was proposed by
Albani et al. [9] to simulate and monitor the (COVID-19)

epidemic evolution in New York City. Lytras et al. [10]
used a modified Bayesian SEIR model for estimating the
ascertainment rate of SARS-CoV-2 infection in Wuhan,
China. Although ultimately the effectiveness of any
measure is reflected in the number of deaths, in this
work, we use the more error-prone infection data for a
number of reasons. The infection data are representative
of the dynamics of the disease at the country level, even
though they clearly depend on the number of tests
performed. At the initial phase, the test availability was
limited, and thus it was used on a need to be the basis
and, as a result, targeted more closely individuals with
symptoms. Additionally, since the COVID-19 pandemic
affects people of older ages primarily, the death data are
strongly age biased and thus do not reflect the true
dynamics of the spreading that leads to these deaths.

In an earlier publication, the first version of which
appeared in the arXiv on March 31, 2020, i.e., right in
the middle of the pandemic, we used a Gaussian
hypothesis for the spreading of the disease and number
of infected persons and predicted the spreading and the
horizon of the first wave [11]. We showed that this
specific functional dependence originated from the
imposed measures and, in particular, from an
approximately linear reduction in the infection rate a(r)
as a result of imposed measures. This hypothesis proved
to have two-fold usefulness: On one hand, it gave a
good prediction for the horizon of the epidemic in
countries like Greece, Italy, and Spain while the
measures were in effect. On the other hand, for countries
such as the US and UK where measures either did not
enforce in full strength or were not applied fast enough,
the prediction of the model based on the Gaussian
hypothesis was rather poor. Although this was expected,
it nevertheless gives a very good way to assess now, i.e.
after the fact, how efficient were the measures in these
and other countries. This may be done by evaluating
from the real data an effective number that gives a
degree of the harshness of imposed measures, adequate
timing, etc. This number, denoted by o, is the slope of
the assumed linear dependent decay of the infection rate
coefficient. Large o means that the effective measures
where drastic and applied on time while, in the other
extreme, o ~0 signifies the practical absence of
measures.

The present study rests heavily on Physics with
Artificial Intelligence (PhAI) where physics modeling
with machine learning are employed in a coordinated
way. Specifically, here we start with an SIR model [12]
and use analytics in order to derive a differential
equation of the infection rate a(¢); this equation contains
the information on the individual infection percentage in
the population. We then take the data for the country’s
infected population and estimate the infection rate ().
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This step is done by using Machine Learning (ML)
techniques and, in particular, by using physics-informed
neural networks (PINN). We pre-train the latter on
simulated SIR data and subsequently train it on each
country’s reported infected data. Instead of assessing a
general a(f) curve, we assume a linear functional
dependence explicitly; its slope o is the result of the ML
procedure we apply. Once the infection rate is known,
we validate the resulting SIR model to the country’s
data and then vary o to see the changes in the epidemic.
This procedure gives a clear picture of both of the
effective measures in each country but also their
efficiency.

The assumption of linear decay in a(r) with slope o is
tantamount to an effective linearization to the actual
infection rates. Clearly, other, more complex forms may
be assumed. We find that this simple form can
efficiently capture the nature of the phenomenon and
give a simple quantitative estimate of the imposed
measures. The values of the slope o are obtained
directly through ML and, thus, in a sense, are directly
derived from the infection data. Thus, we may link each
infection curve with an effective decay slope o that
denotes the overall control that the measures exercise on
the infection phenomenon. Since the approach is
fundamentally data-driven, the knowledge of a
particular slope gives a handling on the possible
measures exercised. Furthermore, once the PINN we
develop works well, we may use it to make predictions.
Specifically, we use data from the second phase of the
spreading, that we assume starts after the initial decline
in the infection, train the network with this data and
make short-term predictions for the current period.

MATHEMATICAL MODELING

The simple Susceptible-Infected-Removed (SIR) infec-
tion model is very powerful in determining qualitative
but also quantitative aspects of the COVID-19 pandemic
[12]. The basic equations are

ds
— =—aSI, 1
- (1)
dr
— =aSI-ul, 2
g - wl-u 2

where § = S (¢), I = I(¢) are the percentage of susceptible
and infected individuals respectively and the infection
and removal rates a = a(f), u=u(t) respectively are
functions of time in general. We introduce the variable
q(t) through the ansatz:

I(f) = eq(t)—fo'u(f’)dt" 3)
Upon substitution to the set of Egs. (1,2) we obtain
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g=as, &)
v=w(1) = f w(t)dr'. 6)
0
Using Eqgs. (4,5) we obtain a closed equation for ¢, i.e.,
@
g==(ae-2)q ™
a

Equation (7) is a unique second order equation that fully
captures the dynamics of the SIR infection model. While
it is highly nonlinear, it is nevertheless quite useful in
determining the infection dynamics since it is general
and contains the arbitrary time dependence of both the
infection and removal rates. It will be used subsequently
in the application of ML techniques to the COVID-19
infection data. In the case of constant infection and
removal rates it can be solved exactly (in Methods
section).

In order to work with a time dependent infection rate
a(t), we start with the general Eq. (7) and we assume for
simplicity that the recovery rate u(z) = u is a constant; in
this case the expression of Eq. (7) simplifies to v = ut
and thus 1(¢) = exp[q(¢) — ut]. We may start from Eq. (7)
and obtain a first order equation for the infection rate
(see Eq. (27) in Methods). This is useful since we are
interested in the inverse problem of finding the infection
rate from the data. The specific form of a(¢) determines
the infection evolution. We know, for instance, that a
monotonic linear drop in the infection rate, as for
instance introduced by gradual social distancing
measures results in an approximately Gaussian evolu-
tion [11].

For the analysis of the first wave we will consider the
case where the infected population behaves similar to a
Gaussian function [11]. In the Gaussian exponent we
will keep a linear time-term in addition to the quadratic
one; this new term is useful since it provides some time
asymmetry; we thus take

q(t) =pr* +yt. ®)

Some algebra (details in Methods) leads to the
analytical expression

a(r) = (2Bt +y) [a(0)y + —(y— )| (9)

2p
2Bt +y

We note that the dominant term is that of linear decay
since at longer times and S < 0 the Gaussian term in Eq.
(9) essentially disappears while the exponential term
also decays when u>vy. In general, of course, the
functional dependence of a(?) is more complex and in
cases with strong asymmetry introduced by vy we have
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distinctly nonlinear decay. We observe thus how
significant is the precise functional form of the time
dependent infection rates for the general evolution of the
SIR modeling of the infection phenomenon. This
general shape of a(f) will be used in what follows.

Machine learning application

We approximate each country’s daily reported cases
using a deep neural network containing one input node,
five hidden layers of 100 nodes with a ‘“sigmoid”
activation function, and one output node. Initially, we
use simulated SIR data and an arbitrary linear function
for a(t) with a constant value for y, to train the model.
The model is trained, using a custom training loop, by
minimizing the mean squared error loss on the data,
MSE,:

MSE, = Li:lx-—ic.I2 (10)

D — N i il »

D oin

where {x,-,ic,.}ﬁvz“1 denote the set of the reported, x; = In(l,),
and corresponding predicted cases, X; =model(t;) and
the mean squared error loss defined by Eq. (7) with
a=a(t)=0y+0t, v=put (i.e., u = constant), and X =
q(t) — ut, MSE

N

MSEg; = — > 1f(t, %, %, %, 00,00mF, (1)
Jj=1

Nsir 4

where,

- . A
f(tja -)’Zja -)’Zja -)’Zj» 0-0’0-’/*[) = 56_/' + (a/jeX/ - ;j)()?j +/'t) = O
J (12)

Then for each of the countries into consideration, we
load the real data and smooth it using a seven time-steps
moving average. We then scale the data using Min-Max
normalization. We load the pre-trained model and allow
all its weights to be tuned by minimizing again both the
MSE,, and MSEj loss functions on the country’s data,
getting at the same time the optimal values for a(f) and
u for the given country. The pre-trained model is used to
accelerate each country’s training process. The training
process of each country stops using early stopping with
a horizon of 100 epochs. The machine learning algori-
thms were implemented in Python using TensorFlow
[13]/Keras [14] and the ADAM [15] optimizer. The data
used in this study are published online at OurWorldIn-
Data.org [16] and the code is available on GitHub [17].

A graphical summary of the procedures used in this
work and how the results and predictions are obtained is
shown in Fig. 1.

Results

The ML model with analytical results will be used both
for the analysis of the first wave of the infections, but
also for making short-term predictions for the second
wave. In the former case we assess the effectiveness of
measures while in the second we make useful
predictions.

Feature extraction through pre-trained, physics
informed neural networks

The exact mathematical analysis of the SIR model is
important for the analysis of the data through ML
techniques. The COVID-19 “first wave” started at
different times in various countries and had a completely
different evolution. In countries where very restrictive
measures similar to those of China were imposed an
effective spreading control swiftly was accomplished.
Other countries that either delayed or imposed partial or
essentially no measures saw larger numbers in the
infected population and slower decay in the infected
numbers. Here we make no judgment as to whether
measures were “good” or “bad”, but we simply want to
be able to extract the presence of the measures from the
dynamics of the infected population. Specifically, we
would like to see what is the imprint of social distancing
in the distribution of the infected population across the
eight model countries we follow. To accomplish this, we
use a strategy that utilizes methods from artificial
intelligence and in particular ML. The basic assumption
in our approach is that the SIR model can capture the
essentials of the epidemic in each country. A direct
consequence of this assumption is that we can use
simulated data from the SIR model to pre-train the
specific neural networks we use for each country.

The application of ML techniques to data often suffers
from the fact that data are considered “pure” with no
connection to a specific phenomenon. A remedy towards
introducing specificity is through the use of physics-
informed techniques where the ML processes, typically
those involving artificial neural networks (ANN), are
restricted imposed by physical laws in mathematical
form [18]. In the specific problem, the SIR equations
play this role and put strict bounds to the ANN used for
simulating the phenomenon. Once we have a physics-
informed network that is trained on the infected data of
the specific country, we may use it to extract the
presence and persistence of the social distancing
measures typified through the function a(#). Since the
ANN finds a general decay and also given the
discussion in the previous section, we posit a linear
dependence in the form a(f)=o0,+0t, where the

© The Author(s) 2022. Published by Higher Education Press
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Figure 1.

intercept o, and the slope o are determined through the
ANN. The slope o, in particular, is a parameter with an
important physical significance, since it estimates within
the linearized model the degree of efficiency of social
distancing. In other words, a large value in o describes
in an average way a country that followed through the
first wave strict social distancing measures while, on the
contrary, small values in the slope denote much looser
adherence to measures. We note that these measures are
not necessarily the externally imposed ones but also
include the self-imposed measures.

Having extracted the optimal a(z) as well as u for each
country, we use them to solve the SIR model, Egs. (1, 2).
The solution is then fitted to the country’s real data
using the initial conditions (/,, S,) as fitting parameters.
The total number of the predicted cases during the “first
wave” period of each country, including the relative
error to the corresponding total number of reported cases
and the total number of cases obtained by varying «(¢)
by + 10%, is presented in the Table 1. A plot of the
results for each country is shown in Fig. 2.

Short-term predictions
The arsenal of PhAI was used in the previous section in
order to extract dynamical parameters such as the time-

dependent infection as well as the removal rates from
the documented infection data. The procedure through

© The Author(s) 2022. Published by Higher Education Press

A Graphical summary of the methods and results of this work.

SIR pre-training proved to be quite efficient and gave a
hierarchy of a(r) for different countries for the initial
period of the infection. It is both tempting as well as
challenging to apply this procedure to the present phase
of the COVID-19 pandemic and attempt to make future
predictions. In the process of future point evaluations,
our procedure needs to satisfy two constraints; one is the
overall mean square minimization that reduces the
overall error. The second is the one imposed by physics,
ie., it must follow the SIR model. In order to
accomplish the latter, the procedure needs to know the
functional of «a(¢) as well as the value of u at the future
points. We provide this information through the
extrapolation of the values from the previous times.
Once these values are known, the SIR dynamics is
warrantied and provides the second, physics derive
constraint.

In Fig. 3 we show the evolution of the current phase
of the pandemic as well as the prediction obtained for a
horizon of one week. In preparing these results, we used
the available COVID-19 data, starting precisely where
the first phase ended and used it up to one week before
end dates for all eight countries for PINN training.
Subsequently, we used the network for prediction and
compared the results with the existing data. We note that
the network’s short-term predictive power is quite good
on average in most countries.
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Table 1 Left: Total number of reported cases during the “first wave” for each country and the corresponding predicted
cases and percentage error obtained from our model, including the predictions with £+ 10% variation of a(f). Right: A bar
plot of the slope —o of each country signifying the degree of adherence to measures. The higher the bar, the more reduced is

the transmission rate due to the control measures.

Country Total cases Error o) + 10% a(h) ~ 10% e
Reported Predicted (%) (% Difference) (% Difference) 25
USA 1961185 1945830 -0.8 1793214 (-7.8) 2063029 (6.0)  0.944 20
Ttaly 240961 275667 144 259349 (-5.9) 284978 (3.4)  0.863
Spain 245938 280859 142 249833 (-11.1)  298190(6.2)  0.791 i 15
UK 286141 312211 9.1  217528(-30.3) 382591 (22.5) 0.872 T 4,
Germany 186839 215563 9.5  182532(-153) 233021 (8.1)  0.776
The Netherlands 50412 55040 9.2 52524 (—4.6) 56583 (2.8)  0.837 oe
France 149668 163580 9.3 117539 (—28.2) 187154 (14.4)  0.702 0.0 —
Greece 2967 3014 1.6 2794 (-7.3) 3155(4.7)  0.540 uS IT ES UKDE NL FR GR
DISCUSSION approximate Gaussian functional dependence in the

The spreading of COVID-19 has generated a wave of
illness and death worldwide, accompanied by a severe
disruption in financial, educational, commercial
activities, global travel etc [1, 21—-24]. During the first
phase of the spreading, there were different approaches
to the measures to be taken to slow it down. Different
countries reacted in different ways, and, as a result, the
epidemic dynamics proceeded differently. The infection
curves were different and dependent strongly both on
the imposed social distancing measures and the adoption
of responsible practices from individuals. One important
aspect of the pandemic is to find ways to assess the
degree to which the social distancing measures where
followed. It is not trivial to extract this information from
the data since the infection dynamics are directly related
to the imposed social distancing measures. Furthermore,
this cannot be done in a completely data-driven way,
and thus assumptions about both the model and the way
measures are imposed are important.

In the present work, we followed an early attempt [11]
and used the publicly available infection data to assess
the effectiveness and adherence to social distancing in
different countries; in doing this analysis, we assumed
that the mathematical model underlying the infection
dynamics is the simplest SIR model. Before using the
arsenal of ML we tackled the model analytically and
produced two basic results; the first one is a general
analytical solution for the model obtained through a
specific exponential ansatz. The second, also dependent
on this ansatz, is a differential equation for the function
a(t) that describes the time dependent nature of the
infection rate. The latter depends strictly on the imposed
social distancing measures as well as the practices of the
individuals. We pointed out, as also in reference [11],
that a linear drop in the infection rate leads to an

infected population. The specifics of this functional
form depends both on the form as well as values of a(f)
but also on the removal rate u.

In order to extract the time-dependent infection rate
from the data, we used physics-informed neural
networks, i.e., a machine learning method that uses input
from the actual model assumed, viz. SIR. This input,
together with the real infection data from each country
we considered, led to a prediction of the assumed linear
in time infection rate. The data derived slope o signifies
the adherence of each country to social distancing. In
Greece, for instance, the slope is large in absolute value,
designating strong application of the imposed measures
by the individuals. In the other extreme, we find the
USA with a practically zero slope, demonstrating that
the measures taken had low efficiency. The other six
countries we analyzed fall in intermediate locations
between these two extremes. Application to the SIR
model of each country, an alternative infection rate that
differs by a few percent (+10%) in total from the one
obtained through ML gives an estimate of how
dependent the infection is on the applied measures. We
find that this variation, while it affects the early SIR fast
rise strongly, results in quite a different infection decay
and horizon in countries like the UK.

Once we know how the PINN behaves with the data
for the initial period of the infection, we may use it for
the second phase. We consider that the latter starts from
the end of the initial period and reaches the present day.
Thus, we use country infection data during this period
except for the last week to train the network and
subsequently make predictions for the last week and
compare it with real data. We find that while the short-
term predictive power of PINN is good, it has large
deviations in countries where the data appear to have a
rather stochastic character.

© The Author(s) 2022. Published by Higher Education Press
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We applied these methods to the case of Greece for
the period since the original posting of the preprint to
the arXiv (August 18, 2020) until December 18, 2020,
i.e., for a period of four months. We made predictions
every Friday evening with a horizon of one week. In
Greece, there was a lockdown imposed on November 7
2020. In Fig. 4 we present the comparison of the weekly
PINN model predictions to the actual reported data after
each prediction period, including the weekly total
reported and predicted cases and the relative error.
Additionally, we show longer prediction horizons based
on data in different periods of the pandemic evolution.
We observe that the model is quite adoptive to the data
behavior, and it gives a quite good short-term average
prediction, when the infection rate does not change
rapidly (relative error 0.3% to 9.2%). It also demon-
strates the degree of effectiveness of the measures. On
the contrary, the model does not follow the pandemic’s

© The Author(s) 2022. Published by Higher Education Press

evolution when the infection rate changes very rapidly,
either increasing, as during the week between October
19 and October 26 (relative error —33.8%) or decrea-
sing, i.e., immediately after the lockdown on November
7 (relative error 31.7% to 55.3%). The relatively
increased error is due to the sharp imposition of
measures exactly that week. This clearly changes
abruptly the infection rate and the model captures this
change in the next predictive period.

The basic conclusion of this work is that the use of
physics-informed ML may enable the extraction of
COVID-19 infection information in different countries,
show how different measures and practices are directly
reflected in the data and ultimately make predictions.
The use of physics in machine learning gives specificity
to the data, but, on the other hand, is restricted and some
times limited to inserted physics knowledge. The present
approach assumes a well-mixed, essentially uniform
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Figure 3. We use data of the second phase of COVID-19 spreading except for the last week, we train the network and predict
the evolution during the last week. The percentage error in the total number of predicted cases of each country found to be
-1.75% for the US, -35.4% for ES, —16.7% for DE, 18.6% for IT, 4.5% for NL, —14.2% for the UK, 31.6% for FR and 10.5% for

GR.

country, an assumption that is introduced through the
use of the SIR model. However, countries have regions,
and each region may behave differently for
geographical, environmental, cultural, as well as
population reasons. If regional data is available, one can
go one step further and introduce spatial in addition to
temporal distribution in the infection and from this be
able to obtain more accurate results and predictions. We
believe the methodology used in this work may be
extended in this more realistic case and provide a more
direct approach to local dynamics and the effectiveness
of imposed measures at a local level.

Limitations

The present approach depends on the SIR model as well
as the fact that naturally we do not know the time

dependent infection rate a(f) during the prediction
period. As a result we assume that during the prediction
period the infection rate is that of the previous
appropriate time segment (or at least it does not change
rapidly). One could envision using other epidemiologi-
cal models for the physics-informed ML or even more
sophisticated neural network architectures than the feed
forward networks (FFN), i.e., the recurrent neural
networks, like the long-short term memory models
(LSTM), as well as make other projections for the rate
a(t). These could lead to improved prediction accuracy.

METHODS
Time-independent infection rates

For the simpler case of constant @ and u, Eq. (7)
becomes

© The Author(s) 2022. Published by Higher Education Press
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10/17-10/24 4607 3050 | -33.8
10/24-10/31 8139 8002 -1.7
10/31-11/07 15058 15591 3.5
11/07-11/14 17421 27049 55.3
11/14-11/21 18137 23885 31.7
11/21-11/28 13475 20412 51.5
11/28-12/05 11898 11865 -0.3
12/05-12/12 9463 10330 9.2
12/12-12/19 6936 9124 31.5

Left: PINN-ML model applied to Greece infection data (green filled circles) for a period of approximately four months.

The predictions are weekly (open orange circles) or longer term (dashed lines). The trend of the infection is generally captured
by the predictions. The imposition of the lockdown changes dramatically the dynamics of a(r) and this is reflected immediately in
the short-term predictions. The intermediate term predictions demonstrate clearly the effectiveness of the lockdown and predict
the observed show decay of the spreading. The dates on the graphs inform on the date the intermediate prediction was
evaluated. Right: Weekly total reported and predicted cases, and the relative error (negative values mean underestimated
prediction by the model, positive values, overestimated prediction by the model).

g =—-ae’™q.

(13)

Introducing the transformation x =g —ut we turn Eq.
(13) into the following form:

X+ae'x+aue =0.

(14)
The new initial conditions are x(0)=In/(0) and
Xx(0) = aS (0) — u. The Eq. (14) is a Lienard Equation that
can be turned into an Abel equation through the

introduction of the transformation [25]
y(x)=x (15)

We obtain the following Abel equation of the second
kind:

W = L)y + fo(x), (16)
fix) =—ae", fo(x) = —aue". (17)
We introduce further the variable £ as follows
&= ffl(X)dx = —ae (18)
Since y, = y.fi(x), Eq. (16) becomes
Ve =y+H. (19)
The Eq. (19) has the implicit solution
E=y—pulnly+pyu|+C, (20)
where C is an arbitrary constant, or
—ae' =y—ulnly+pul+C. (21)

Once the solution y = y(x) is substituted to Eq. (19) in
the form

dx
y(x)’
we have the implicit solution 7 = #(x) for Eq. (18). Upon

(22)

© The Author(s) 2022. Published by Higher Education Press

inversion of this solution we may obtain ¢(f) and thus
have a solution for the original SIR equation.

Initial conditions

The Eq. (13) is a second-order equation while the SIR
system of Eq. (1, 2) constitutes a system of two first-
order equations with initial conditions S (0) and 7(0). It
is easy to see that g(0) = In/(0) while ¢(0) = @S (0). Thus
for Eq. (18) we have the following initial conditions
x(0)=¢g(0)=InI(0) and X(0)=¢g0)—u=aSO)—pu.
Since both susceptible and infected variables are
percentages over the total population, the range of the
q = q(t) variable is (—oc0,0] while x(¢) takes similarly
values in the same range.

Let us designate for simplicity the values at t =0 of
x(0)=k and x(0)=m; clearly k=Inl(0)<0 and
m = a8 (0) — u. The latter can be either positive, negative
or zero, depending on the initial state of the infection
and the corresponding infection rate R,. The defining
transformation of Eq. (15) at = 0 becomes y(k) = m and
thus the constant C in Eq. (21) is

C=—ae"—m+puln|m+py|

= —al(0)—aS(0)+u+uln|asS (0. (23)

In other words, the solution Eq. (21) of the differential
equation of Eq. (19) should be solved for x > k since at
t =0 we have x(0) = k. Thus, the original SIR problem
has solution given by

—ae* =y—pulnly+ul—al(0)—aS (0)+pu+uln|as (0),
(24

or, in the equivalent form
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e’

In
ly +pl

] =—ae" +al(0)+aS (0)—u—uln|as (0),
(25)

for x > In/(0) and with the final implicit formula given
through the integral of Eq. (22) modified as follows:

X d X In/(r) d X
=| —= —_—. 26
! L y(x) jlnm» y(x) (26)

Time-dependent infection rate equation

For the time-dependent infection rate we write Eq. (7)
as:

da )
= fa = g0, @7)
fo=-4, 28)
q
gty =e. (29)

The Eq. (27) is a Bernoulli equation [25] that can be
turned into a linear first order equation by using the
transformation z(¢) = 1/a(¢); we obtain

dz
o - f(Mz+g@) =0. (30)

The general solution thus of Eq. (27) obtained through
the solution of Eq. (30) is

1

s = e fe””g(t')df, 31)

F= —f fHdr, (32)

where C” is an arbitrary constant.

Let us now consider the case where the infected
population behaves similar to a Gaussian function [11],
keeping however also a linear time-term in the exponent
that provides some time asymmetry, i.e. take

q(t) = B +yt. (33)
Simple algebra leads to

q—pt =Bt +(y—pt, (34)

__4___2
f= 0" ey (35)
gty =e"" = eﬁt“r(yfu)r, (36)

— (prrvar = (2B
F= f f@dr = f Sy =B, 37)

and thus the solution of Eq. (31) becomes

10

1 a0y N K()
alt)y  2Bt+y  2Bt+vy’

(3%

K@y == [ @pr +y)e v ar

=[28—(y—w)(y +2B1)] & 0", (39)
This leads to Eq. (9).
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