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The nonlinear dimer obtained through the nonlinear Schrödinger equation has been
a workhorse for the discovery the role nonlinearity plays in strongly interacting sys-

tems. While the analysis of the stationary states demonstrates the onset of a symme-
try broken state for some degree of nonlinearity, the full dynamics maps the system

into an effective φ4 model. In this later context, the self-trapping transition is an ini-

tial condition-dependent transfer of a classical particle over a barrier set by the nonlin-
ear term. This transition that has been investigated analytically and mathematically is

expressed through the hyperbolic limit of Jacobian elliptic functions. The aim of this

work is to recapture this transition through the use of methods of Artificial Intelligence
(AI). Specifically, we used a physics motivated machine learning model that is shown to

be able to capture the original dynamic self-trapping transition and its dependence on

initial conditions. Exploitation of this result in the case of the nondegenerate nonlinear
dimer gives additional information on the more general dynamics and helps delineate

linear from nonlinear localization. This work shows how AI methods may be embedded

in physics and provide useful tools for discovery.
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1. Introduction

The life of the famous Discrete Nonlinear Schrödinger (DNLS) equation started

with a different name, i.e., as the Discrete self-trapping (DST) equation introduced

by Eilbeck, Lomdhal and Scott in 1985 in a seminal paper that marked nonlinear

dynamics.1 The DST equation was motivated by biology and the idea of the Davy-

dov soliton that was thought to dominate the energy transfer processes in proteins.2

In this first paper Eilbeck et al. showed that in the stationary version, the DST gen-

erates an abundance of bifurcations and states produced through nonlinearity that

grow in numbers and complexity as the number of units increases. The simplest

case of two units, i.e., the dimer, although it also shows the emergence of nonlinear

states it is fully integrable while systems with larger number of units are generally

nonintegrable and chaotic. The complete dynamical analysis of the DNLS dimer

was performed soon after this by Kenkre, Campbell and Tsironis where the onset of

the self-trapping transition is seen as strongly initial-condition-dependent passage

over a barrier.3–5 The presence of nonlinearity turns the linear dimer trigonomet-

ric evolution to elliptic function evolution while the self-trapping transition itself is

nothing but the reduction of elliptic functions to hyperbolic ones. Physically, non-

linearity slows down the transfer from one site of the dimer to the other in a pro-

cess that takes infinite amount of time at a critical nonlinearity while incomplete

transfer marks the self-trapping regime.3 These results are important for strongly

interacting electron-phonon systems of molecular crystals but the DNLS equation

appears also in photonics. In this context Christodoulides and Jospeh analyzed the

two optical fiber nonlinear dimer and showed that self-trapping may assist in the

design of fiber systems with designed switching properties.6 The work mentioned

already on the dimer focused on the degenerate case where both units are identical;

if they are not we may have an energy mismatch build in. In this nondegenerate

nonlinear dimer case the role of the self-trapping is mixed with the energy mismatch

and although the system remains integrable and solvable through elliptic functions

the behavior is more complex.7

The DNLS equation nonlinear dimer is a remarkable system that is simple

enough to be studied analytically yet it contains nontrivial complexity. For the sake

of pictorial simplicity let us assume we have two molecular units that each have

one available energy statea When both states have the same energy, the dimer is

degenerate and the wavefunction overlap V determines the transfer time from one

site to the second. In this case the transfer is complete in the sense that an initial

excitation placed fully on site one may transfer completely to the second site. The

transfer occurs because the two sites are at resonance-since they have the same

energy value- and, in this case, the transfer element V facilitates this resonant trans-

fer. When the energies are not the same, as in the case of the nondegenerate dimer,

the two sites cannot be fully resonant. In this system, the matrix element V only

aWe use the “condensed matter picture” here. Similar interpretation follows in the “photonics”
picture that we presently avoid for simplicity.
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transfers part of the excitation to the second site; clearly the amount transferred

depends on the competition between the energy mismatch ∆ and the transfer V .

This linear picture transfers to some extent in the nonlinear dimer case. When we

have the fully degenerate dimer, the nonlinearity affects equally both sites lead-

ing to reduction of excitation transfer speed yet still enabling full transfer at small

nonlinearity values. At a given critical nonlinearity symmetry breaking occurs and

complete transfer is replaced by incomplete transfer to the second site. In other

words, nonlinearity introduces dynamically an effective energy mismatch and ren-

ders the nonlinear dimer nondegenerate. This trend increases with nonlinearity and

for very large nonlinearities the transfer becomes very small.b

If strong nonlinearity turns the degenerate dimer into an effectively nondegener-

ate one then when we start with a nondegenerate dimer we expect the two tenden-

cies to augment. In fact for localized initial conditions the nondegeneracy introduces

resonance mismatch while nonlinearity generally augments this tendency and the

transfer is even less complete. There is however an exceptional case where nonlin-

earity acts in such a way as to eliminate effectively the energy mismatch introduced

by nondegeneracy. This is the case of Targeted Energy Transfer (TET) introduced

by Kopidakis, Aubry and Tsironis, where it was shown analytically that appropriate

choice of nonlinearity restores the ultra-fast transfer of the purely linear degener-

ate dimer.8 This somehow surprising behavior in TET comes however with a price,

viz. the nonlinearity in the two dimer sites has the same absolute value but oppo-

site sign. One site is thus attractive and the other repulsive; the last feature could

stem physically from a capacitive effect induced from local charge accumulation.

The discovery of TET completes in some conceptual sense that path that starts

from the linear degenerate dimer: The resonant transfer that is inhibited by either

linear nondegeneracy or nonlinear self-trapping is fully restored in the TET dimer

that encompassed both in an appropriate way.

The aim of this work is to investigate if some of the discoveries in the nonlinear

dimer outlined previously may be addressed through Artificial Intelligence (AI)

tools. More specifically, we would like to know if Machine Learning (ML) motivated

from physics may play some role in discovering symmetry breaking properties of

the nonlinear dimer. We believe that this is an interesting question since the dimer

is well studied analytically and thus it can form some sort of test bed for these

methods. If successful then can be applied to other more complex cases. The more

specific target of this work is the self-trapping transition, the landmark of the

nonlinear dimer and whether it can be predicted by ML.

The structure of the paper is the following: In Sec. 2, we introduce the math of

the DNLS equation, describe explicitly the self-trapping transition and give quan-

titative information. In Sec. 3, we use ML and describe the predictions related to

self-trapping. Here, we detail our ML method and give the results for the degenerate

bThis picture is strongly initial condition-dependent and it can be altered if initial phases are
introduced.5
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nonlinear dimer both for localized and more general initial conditions. In Sec. 4, we

focus on the nondegenerate nonlinear dimer, describe its dynamical phase diagram

and show how ML can capture the transition here as well. Finally, in Sec. 5, we

conclude and provide a more general AI-based picture on the dimer studies.

2. The Nonlinear Dimer

In this section, we review basic nonlinear dimer properties. We start from a general

expression of the DNLS equation written in the form

i
dψn

dt
= εnψn + V (ψn+1 + ψn−1)− χn|ψn|2ψn, (1)

where ψn ≡ ψn(t) is a complex variable at time t while εn, χn and V are parameters

of the problem. We will follow the condensed matter interpretation of the equation.9

In this representation, we can think of a one-dimensional infinite lattice where each

site is labeled by the index n, we have local site energy εn and local nonlinearity χn

while V is the common nearest-neighbor integral overlap. A quantum mechanical

particle tunnels from site to site while experiencing a nonlinear interaction due to

strong coupling with other degrees of freedom-in the LHS of the equation we have

suppressed ~. The complex quantity ψn is simply the probability amplitude for the

particle to be found at the nth unit.

For the dimer we have only two units; we note the occupation probability dif-

ference between the two sites with p(t) = |ψ1(t)|2 − |ψ2(t)|2 as in Ref. 3. We des-

ignate further the energy difference between the energy levels as ∆ = ε2 − ε1; with

the exception the case of TET both nonlinear parameters are equal to each other,

i.e., χ1 = χ2 = χ. It is useful to scale parameters as δ = ∆/2V and ζ = χ/4V .

In the pure degenerate case (δ = 0) and for perfectly localized initial condition,

i.e., ψn(0) = δn,1 the self-trapping transition occurs at the critical value ζcr = 1.

For ζ < ζcr there is complete transfer of the excitation between the two units

although the motion becomes slower. Specifically, the period of oscillation for p(t)

grows as T = T0K(χ/4V ), where K is the complete elliptic integral of first kind

and T0 = π/2V is the period of the linear dimer.3 For ζ > ζcr the transfer becomes

incomplete. The reduction of transfer speed due to nonlinearity has been consid-

ered as a signature of polaronic effects while the incomplete transfer an effective

introduction of an energy mismatch by nonlinearity.

In the linear nondegenerate dimer there is incomplete transfer from the begin-

ning; here the nonlinearity accentuates this tendency. It is noteworthy that at small

nondegeneracies the increase of nonlinearity leads to a similar behavior that is char-

acterized by a sudden decrease in the transfer to the other side, i.e., a behavior that

may be similarly associated with a self-trapping transition.7 Nondegeneracy and

nonlinearity work in a coordinated way but the nonlinearity has to reach a thresh-

old value before we observe a qualitative change in the dynamics of transfer. As
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mentioned earlier only in the TET case this cooperation of δ and ζ can be broken

and the original resonant transfer restored.

2.1. Methodology

The methodology in this work follows a path similar to the one proposed by

Barmparis and Tsironis to discover nonlinear resonances through ML.10 There is

currently substantial interest in ML approaches that utilize directly equations of

physics or mathematics.11 In this work, we integrate numerically Eq. (1) using a 4th

order Runge–Kutta method with an integration step of 0.005 and introduce a new

data-free physics-informed loss function, designed to capture the desired properties

of self-trapping transition defined as

Loss(Tmin(P1), ζ) = |0.5− P1(Tmin(p1), ζ)|, (2)

where P1(Tmin(p1), ζ) = |ψ1(Tmin(p1), ζ)|2 is the probability of the system being

at state, 1, at time, Tmin(P1), for the given ζ value. This definition ensures that

minimizing the loss function will conclude to a minimum occupation probability

equal to 0.5 for state 1. It is equivalent to P1(Tmin(p1), ζ) − P2(Tmin(p1), ζ), where

P2(t) is the occupation probability of the second site at the designated time t.

A difficulty one faces in training a ML model with the above loss function is that

the minimum occupation probability at state 1, P1, becomes zero for all the values

of 0 < ζ < 1. Thus the loss function ends up being flat and equal to 0.5. Having a

flat loss function, independent of ζ, prohibits the model from updating its weights

and thus the training process stops. This behavior is demonstrated in the area with

the white background in Fig. 1, where the trajectories initialized inside the range

of 0 < ζ < 1 are stuck around the initial value of ζ. In order to avoid having

trajectories that result to parameters that do not satisfy the required properties,

we initialize all of the trajectories to a large enough value of ζ. Using a large initial

value of ζ addresses the problem of having untrained trajectories, but it does not

ensure the finding of the proper parameters, i.e., minimizing the loss function. The

reason is that by using a large initial value for ζ, we need to use a large value

for the learning rate during training in order to accelerate the learning process.

Using a large learning rate may result in substantial changes in the loss function

and consequently significant changes to the value of ζ, which may land to values

inside the flat area of the loss function. Thus, we introduce one more criterion to

keep a large value for the learning rate and continue minimizing the loss function

properly. This criterion checks if the minimum occupation probability, P1, at the

last step during the training process is less than 0.5. If this happens, it returns the

value of ζ back to its previous value while reducing the learning rate by a factor

of 10. This additional criterion ensures that we always approach the critical value

of ζ from values where P1(ζ) > 0.5 and that by using an adaptive learning rate, we

will converge to the critical value. The algorithm was implemented in TensorFlow
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2.412/Keras13 using an Adam optimizer14 with a custom learning rate. The details

of the algorithm can be found in Ref. 10.

3. Physics and Machine Learning in the Nonlinear Dimer

In the nonlinear dimer we have a complex dynamical problem that mixes three sep-

arate behaviors: The first is the dynamical breaking of symmetry induced in the

degenerate dimer case; this is the landmark of the self-trapping transition. Nonlin-

earity becomes a dynamic mismatch agent and lifts the resonance between the two

sites. The second involves nondegeneracy already at the linear regime that is accom-

panied by incomplete transfer. In this case nonlinearity enhances the mismatch

especially at large values. Finally we can also restore resonance even in the nonde-

generate case through the proper choice of nonlinearity; this is the case in TET.

The question we pose now is whether we can detect this complex behavior through

specific use of AI. If the answer is affirmative this will lead to the development of a

mechanism for the discovery of resonant properties of nonlinear dynamical systems.

Using the methodology outlined earlier we obtain the following results.

Fig. 1. (Color online) The nonlinear dimer self-trapping transition with ML. The transition
is obtained by following the minimal value of the occupation probability at the first site as a

function of the scaled nonlinearity ζ. The red dotted line denotes the calculated through ML

actual occupation probability P1(t). This curve shows precisely the features of the self-trapping
transition. The X -axis of the figure shows also the flow of trajectories for various initial conditions.
The blue bullets denote the initial value of the nonlinearity parameter ζ of ten randomly initialized

trajectories (black dashed lines), while the yellow star points to the final value of ζ. This final value
is either the value that satisfies the desired properties of the system, i.e., self-trapping transition,

or a position that the learning process was unsuccessfully stuck (see Sec. 2.1). The area with the
gray background (ζ > 1) shows the range of values for the nonlinearity that conclude to self-

trapping transition. In the inserts we show the time evolution across the transition for ζ → 1−
(free motion) and ζ → 1+ (self-trapped motion), respectively.
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3.1. Localized initial conditions

Let us first give the results regarding the self-trapping transition starting from a

localized initial condition. This is shown in Fig. 1, where the circles denote the initial

value of the nonlinearity parameter ζ of several randomly initialized trajectories

(black dashed lines), while the yellow star points to the final value of ζ. This value

is either the value that satisfies the desired properties of the system, i.e., self-

trapping transition, or a position that the learning process was stuck as explained

in Sec. 2.1. The red dotted line presents the minimum occupation probability at

state 1, min(P1) as a function of the nonlinearity parameter ζ. The area with the

gray background (ζ > 1) shows the range of values for the nonlinearity that conclude

to self-trapping transition. The inner plots present the occupation probability of

each state of the system as a function of time. The plot inside the white background

shows the situation just before the condition for self-trapping transition (ζ → 1−)

and the one inside the gray background the situation just after the self-trapping

(ζ → 1+). We observe that the ML procedure we use discovers the self-trapping

transition at ζcr = 1, i.e., χcr = 4V .

3.2. General initial conditions

When the initial placement of the excitation is not fully on one of the sites

the amount of nonlinearity necessary for self-trapping changes. For real off-

diagonal elements of the density matrix ρmn = ψmψ
∗
n the critical nonlinearity for

Fig. 2. (Color online) Self-trapping transition with ML for general initial conditions. The solid
line is the curve of Eq. (3) while the blue bullets were produced with ML. The two branches

correspond to in-phase (solid red line) and anti-phase (dashed red line) initial conditions.
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self-trapping is

ζcr =
1± (1− p20)1/2

p20
(3)

with p0 = ρ11(0) − ρ22(0) and where initial real amplitudes may be “in-phase”

having the same sign or in “anti-phase” with opposite sign.5 The former choice

leads to the plus sign in Eq. (3) while the latter to minus. We note that the critical

nonlinearity for self-trapping increases as the amount of initial localization decreases

for in-phase motion while the opposite for the out of phase motion. In Fig. 2, we

show the results for general initial conditions with real and positive off-diagonal

matrix elements of the density matrix. The continuous line is the analytical result

of Eq. (3) while the blue bullets present the results of the ML search. Both in-

phase and anti-phase branches are shown. We see a remarkable agreement between

the two demonstrating that ML can discover faithfully arbitrary initial condition

results in the dynamic phase transition.

4. The Nondegenerate Dimer

In the nondegenerate nonlinear dimer (NNLD) nonlinearity mixes with the nonres-

onance condition induced by nondegeneracy. We have two different aspects; one is

the effective linear “disorder” introduced by the energy mismatch. The larger the

energy difference the smaller the transfer of energy from one site to the next. The

second feature is the nonlinearity; this introduces an effective mismatch as well

that is however dynamic and controlled by the initial conditions. Both nonresonant

mechanisms act in the same direction, although the linear nondegeneracy is always

present while nonlinearity operates better after a threshold value.

The NNLD can be mapped into an effective problem of a particle in a potential

well similar to the nonlinear dimer.7 Assuming localized initial conditions, in the

latter the self-trapping transition occurs when the potential develops a flat region

indicating the presence of a barrier separating the sites.3 If a similar criterion is

applied in NNLD we find an interesting dynamic phase diagram where the transition

point of the nonlinear dimer becomes a “critical line”.7 Furthermore, in addition to a

linear-disorder dominated region as well as a nonlinear dominated one we also find a

mixed region where the two tendencies mix. The phase diagram is obtained through

analytical means while the ML-based analysis that we now detail is completely

independent of the mathematical approach.

In the NNLD for small nondegeneracies there is a sudden transition from quasi-

resonant motion to self-trapped one7; this produces the solid line in Fig. 3. This

line that replaces the self-trapping point of the degenerate case is fully captured

by ML! The second, dashed line, marks the end of the region where nonlinear

localization dominates. In the work of Archilla, MacKay and Marin the distinction

of linear versus nonlinear localization was discussed in the context of a more general

model.15 Broadly speaking, linear localization corresponds to pure Anderson modes
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Fig. 3. (Color online) Self-trapping transition with ML for the nondegenerate nonlinear dimer
with localized initial condition. The continuous lines are result of analytical calculations while

the bullets a result obtained through ML. The solid continuous line represents the self-trapping

transition that is a transition to a region of nonlinearly localized states. The “tie” region between
the continuous and dashed line corresponds to self-trapping or nonlinear localization.

while nonlinear localization to Discrete Breather (DB) modes. The NNLD provides

possibly the simplest system where we may study analytically the competition and

coexistence of Anderson modes and discrete breathers. Using this nomenclature we

may designate the region in the “tie” diagram between the two analytical lines as

DB or nonlinear localization region. The Anderson, or linear localization regime is

the region parallel to the δ-axis for small ζ (except the line at δ = 0). For large

nonlinearity and nondegeneracy the linear and nonlinear feature of the localization

mixes completely and may not be separated.

We note in the phase diagram that we may start with an Anderson mode,

deform it and reach a DB mode. This can be done in multiple ways, depending

on how we change the parameters δ and ζ. One class of paths crosses the self-

trapping line discovered by ML while an alternative class may simply reach the

same state without crossing it. The transition from Anderson to DB modes in the

present model is similar to a first-order phase transition with a critical point. It is

interesting that ML can actually capture the coexistence line that separates the two

dynamical regimes in the NNLD. In Fig. 4, we show the actual time dependence

of the probability to be in the initially populated site. We have two sets of paths

on the diagram, ABCD and EFGH as well as the central critical point I. All time-

dependent curves show the time evolution of the initially populated site. At A we

have almost complete oscillation between the two sites while crossing the critical

line we arrive at point B with incomplete, self-trapped motion. The path to C does
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Fig. 4. (Color online) Phase diagram for the self-trapping transition with ML of the nondegener-
ate nonlinear dimer with localized initial condition. Time-dependent evolution for different parts

of the parameter space. The transition across the critical line is discontinuous (A to B) or (E to F )

induced by increase in oscillation period. The line terminates in the critical point I where the time
dependence is algebraic. We may use paths in the parameter space around the critical point I to

go from the free to the self-trapped regime without encountering discontinuity in the character of
the evolution.

not change dramatically the localized nature of the motion while the reduction of

localization in D is done in a gradual way. It is clear that crossing the transition

line (A to B) results in a discontinuous symmetry breaking although we may reach

B also through the continuous line A to D to C to B. A similar behavior is seen

in the second trajectory EFGHE where the passage from E to F is discontinuous

while the rest of the trajectory is continuous.

From this analysis we observe additionally that the crossing of the transition

line parallel to the ζ-axis, as for instance from E to F, is done through the increase

in period of oscillation that eventually leads to self-trapping. This is very similar

to the degenerate dimer analysis related slowing down induced by nonlinearity.3

Table 1. Dynamical behavior of linear and nonlinear dimers discussed in this work.

Type Linear dimer Nonlinear dimer TET

Degenerate Resonant transfer Resonant transfer
self-trapping

Nondegenerate Nonresonant transfer Linear and nonlinear Effectively linear
localization resonant transfer
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The transition to an Andreson mode, on the other hand, is a gradual transition to

a more and more localized state effected from the increase of the energy mismatch.

The critical NNLD line terminates in the critical point I, where the time dependence

is algebraic.7

5. Conclusions

Is there any reason to mix physics with AI? In theoretical physics we have a clear

methodology that works quite well. We formulate models, solve them analytically

if we can, otherwise we use numerics. What can AI add to this well established

discovering processes? ML can manipulate data and make projections. If training is

done properly we may find hidden properties in data. In this work, we used a well

studied model where most results are known analytically. This aspect provides a

great advantage since we may test for any property we wish and be able to compare

the ML predictions with solid, analytical results. Furthermore, the specific model

of the DNLS equation nonlinear dimer provides a framework for numerous other

investigations where the results are only known approximately.

The basic feature of the nonlinear dimer is the self-trapping transition, i.e., a

dynamical symmetry breaking that occurs when the nonlinearity passes a certain

critical value. This transition is in some sense anticipated in the study of the sta-

tionary states of the model where a new state appears along with the analytic

continuation of the normal modes of the linear dimer.1 Since the equations, how-

ever, are nonlinear, knowledge of the nonlinear stationary states cannot give the

arbitrary time evolution of the complete problem. Using an optimization back prop-

agation procedure we saw that we can recover the original self-trapping transition

for the extremely localized initial condition.3 This is a significant finding because it

shows that ML methods are able to distinguish accurately dynamical regimes with

different properties. In addition to the localized initial condition, more general ini-

tial conditions give different dynamic dimer evolution; this was also captured by

our ML-motivated method. We note that although ML methods have been applied

in equilibrium phase transitions16 the one we studied is dynamic and thus cannot

be accessed through statistical means and forms of image recognition.

The non-degenerate nonlinear dimer (NNLD) is a simple yet significant sys-

tem because it includes simultaneously in the simplest, almost rudimentary form,

Anderson localization and discrete breathers at the same time. The former is due

to “disorder”, i.e., the energy mismatch between the two sites while the later is due

to self-trapping and the formation of a nonlinear localized mode or DB. The com-

petition and/or coexistence of the two is an interesting topic of research in general

lattice models.15 The NNLD provides the simplest model that can give clues in this

question. The phase diagram obtained using the precise mathematical criterion of

the appearance of a flat region in the effective dimer potential determines essentially

three domains.7 In more modern parlance we could call then Anderson-dominated,

DB-dominated and mixed phases. In the first the linear aspect of localization, i.e.,
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the nondegeneracy, dominates. The second is nonlinearity-dominated while in the

mixed case the two features are not separated. It is interesting that similar conclu-

sions were obtained for long nonlinear lattices using more sophisticated mathemat-

ical methods.15 In Table 1, we summarize these aspects for the dimer system.

The use of ML motivated methods was able to determine the NNLD dynamical

regimes without resorting to the precise mathematical condition introduced in the

original work. It is remarkable that this alternative-data driven- approach recovers

successfully the analytical results! This has important consequences since it shows

that the range of possibilities for the ML-based discoveries in cases where analytics

is not possible is unlimited. In particular, the knowledge that nonlinear localization

proceeds through frequency increase and it is abrupt while the linear one is gradual

is a feature that may be directly applied with ML in a possible detection of localized

modes.

In the NNLD there is a mixture of “static” as well as “dynamic” energy mis-

match or disorder. The former stems from the energy difference in the two sites that

introduces a natural off-resonance mechanism. The latter comes from the nonlinear-

ity that due to its localization tendency introduces an initial condition-dependent

nonresonance mechanism. We noticed that both localization mechanisms work in

the same direction and in a sense augment localization be it linear or nonlinear.

There is however a case where the two work in opposition; this is provided by TET.

In the TET configuration the nonlinear terms oppose the Anderson localization

feature and as a result we recover the perfect resonance. This feature is captured

fully by an ML method.10
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