
What is an operating system?

When any user is working on a computer, the operating system is the software that's controlling
everything that's happening, in real-time.

Volatile vs non-volatile memory
In order to understand where the operating system is stored on the device, you need to
understand the difference between the different kinds of memory, RAM vs hard disk.

Simply put, RAM, (which stands for Random Access Memory) is the temporary (volatile) storage
on your computer, while the hard disk is the permanent (non-volatile) memory. Every time you turn
off your computer, the RAM will be erased, while the hard disk or hard drive data (HDD will be
kept for the long-term.

It's much faster to collect data from RAM, which is why the Central Processing Unit (CPU) relies
on RAM to get the information it needs. The CPU will be what performs actions, sends and
receives data, and basically controls everything that happens while you are using the machine.
Ideally, we would store everything in RAM!

However, the more full your RAM is, the longer it will take to draw information, and there is a finite
amount of space in this local memory. That's why the most common IT advice one can get is to
give their machines a quick reboot to see if that speeds up processing time, and why we keep
larger files and applications on the hard drive.

As RAM is wiped every time the machine shuts off, and you wouldn't want to lose your operating
system every time you left your desk for the evening, the answer to where your operating system
resides is...in the hard drive.

Can the operating system be stored on RAM?

The operating system is stored on the hard disk, but to speed up the whole process, the OS is
copied into RAM on start-up. This is completed by BIOS (Basic Input Output System).

Here's how it works: BIOS is in its element for the start-up sequence of your computer, and then
once you're all booted up, it actually does very little. Stored on the read-only memory of the
computer, (often known as ROM) it controls all of your computer hardware, including the hard
drive. That means its responsible for loading the operating system from the hard drive when you
start up your machine.

As we said, the BIOS is responsible for loading the operating system, but remember the big
problem? Grabbing information from the hard disk is a slow way to work. To combat this, and
speed up the whole start up process, the BIOS copies the whole operating system to RAM.
Now, the CPU doesn't have to load information from the hard disk (slow), as it can get all the
information it needs from RAM (super speedy).

While users are utilising the operating system, all of this information is leveraged from the copy -
the one that is stored in RAM. However, the "real" version of the operating system remains on the
hard drive, and stays in non-volatile memory that will not be deleted or changed.

Where is Windows 10 stored?

If you're looking for the system files of your Windows OS, you'll probably find them in C:
\Windows, usually in specific subfolders, like /System32 and /SysWOW64. Some files
may be hidden in your C drive.

TERMINOLOGY EXPLAINED:

✦ Volatile memory (or volatile storage) is a type of computer memory that cannot
retain stored information after power is removed, e.g. random access memory -
RAM. 

✦ Non-volatile memory (or non-volatile storage) is a type of computer memory
that can retain stored information even after power is removed, e.g. read-only
memory - ROM, disk storage, hard disk drives, and generally most types of
computer data storage devices. 

✦ ROM (read-only memory) is a type of non-volatile memory used in electronic
devices, and refers to memory that is hardwired. This means data stored in ROM
cannot be electronically modified after the manufacture of the memory device.
Corrections of errors, or updates to the software, require new devices to me
manufactured and to replace the installed device. 

➡ Non-volatile computer memory storage media that can be electrically
erased and re-programmed do exist. Examples are: 

1. Erasable programmable read-only memory (EPROM): they have
to be erased completely before they can be re-written. 

2. Electrically erasable programmable read-only memory
(EEPROM): memory can be erased, written, or read independently
or in blocks. 

3. Flash memory: a type of floating-gate MOSFET memory, based
on EEPROM technology. There are two types of flash memory:
NOR flash and NAND flash. Flash memory has fast read access
time, but is not as fast as static RAM or ROM. 

All of the above fall under the category of floating-gate ROM semiconductor 	
	memory. This means they can be erased and re-programmed, but have 	 	
relatively slow speeds.

ROM is useful for storing software that is rarely changed during the life of the 	
system, a.k.a. firmware (e.g. BIOS, or even complete operating systems for 	 	
less complicated devices).

The term “ROM” is sometimes used to mean a ROM device containing specific
software, or a file with software to be stored in EEPROM or Flash memory.

✦ BIOS (Basic Input/Output System) is a firmware used to provide runtime services
for operating systems and programs, and to perform hardware initialisations
during the booting (power-on startup) process. Originally, BIOS firmware was
stored in a ROM chip on the PC motherboard. In later computer systems, the
BIOS contents are stored on Flash memory so it can be re-written without
removing the chip from the motherboard. 

Overview

Non-volatile memory is typically used for the task of secondary storage or long-term
persistent storage. The most widely used form or primary storage today is a volatile
form or random access memory (RAM), meaning that when the computer is shut
down, anything in RAM is lost.

Encoding information

Computer science is all about problem solving: we get some input data, we process them based
on some logic, and we get the desired output.

But, computers are not smart; In fact, they work on a binary basis: they can only understand if a
circuit is closed (electric current flows - 1) or not (electric current does not flow - 0). How can we
make them understand complicated concepts allowing them to operate similar to a human? For
example, a human will typically count in the decimal system using intuitively their finger, each one
of them representing a single unit. How can computers do the same using only 0’s and 1’s? How
can a computer count past 1?

First we need to decide in advance how to represent these input and outputs we discussed
above. Let’s see how high we can count using some number of binary digits (a.k.a. bits):

Binary representation Decimal representation

0 0

1 1

1-bit range

Most forms of non-volatile memory have limitations that make them unsuitable for use
as primary storage. Typically, non-volatile memory costs more, provides lower
performance, or has a limited lifetime compared to volatile RAM.

Non-volatile data storage can be categorised into electrically addressed systems
(read-only memory - ROM), and mechanically addressed systems (hard disks, optical
disks etc). Generally speaking, electrically addressed systems are expensive and have
limited capacity, but are fast, whereas mechanically addressed systems cost less per
bit, but are slower.

AlgorithmInput Output

The more bits I have available (memory to store these digits), the higher I can count, i.e. represent
more information.

One may wonder how did we come up with this particular pattern to represent numbers in the
binary system. The truth is that it’s the same set of rules we use for our familiar decimal system.
Let’s take a look at number “123” as an example; each “column” represent something: hundreds,
tens etc.

Example:

So, the number 123 can be written as:

(123)10 = (0 x 103) + (1 x 102) + (2 x 101) + (3 x 100)

Similar, in the binary system:

Binary representation Decimal representation

00 0

01 1

10 2

11 3

2-bits range

Binary representation Decimal representation

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

3-bits range

… 103 102 101 100

… # # # #

… 103 102 101 100

… 0 1 2 3

… 23 22 21 20

… # # # #

Example:

So, the number 5 in the binary system would be written as:

(101)2 = (1 x 22) + (0 x 21) + (1 x 20) = (1 x 4) + 0 + (1 x 1) = 1 + 4 = (5)10

Practice:

Nowadays, it’s standardised that any number will be represented typically using 8 bytes (= 64
bits), but of course we can use more bytes if deemed necessary.

Representation of letters
Hopefully, by now, we got a better understanding of how representation of numbers is done in
computers, and hence how number crunching programs, e.g. MS Excel, operate under the hood.
But what about letters? How are these represented using only 0’s and 1’s?

An obvious solution is to assign each character (including lowercase, uppercase, symbols etc) to
a unique number and use the representation of the number in binary to refer to that letter, e.g. 1 is
a, 2 is b, … 27 is A, 28 is B etc.

It turns out that people did exactly that: they standardised the English alphabet and symbols
creating the ASCII table. For example, “A” in ASCII is the decimal number 65 or, equivalently, the
number 01000001 in binary. So, if that pattern of 0’s and 1’s appear the computer would perceive
it as the capital letter “A”.

But now it seems we created a problem: how do we differentiate between the letter “A” and the
decimal representation of the number 65? How does the computer know when to use the number
65 for math or its mapped ASCII value?

The answer is that it’s context dependent: In the context of a text editor, like MS Word, it could be
meaningful this pattern to be perceived as a letter but in MS Excel, the same pattern of 0’s and 1’s
would be perceived as a number, or in Photoshop as a colour even!

That’s why the programmer provides some hints to the computer that tells the compiler to
interpret something in a specific way.

So if you receive an SMS that says “Hi!”, what is really going on behind the scenes is that it
received the sequence of numbers : “72 73 33” that maps to "H I !”.

… 23 22 21 20

… 0 1 0 1

Convert (53)10 to an 8-bit binary number.

Notice that even if the numbers 72, 73, 33 do not need 8 bits to be represented in binary, it’s
standard to come up as packets of 8. That’s because the extended ASCII table has 255 mappings
(negatives not included) for each character and the number 255 requires exactly 8 bits to be
represented in the binary system (i.e. 255 = 11111111). So, this “HI!” Message would be 8 + 8 +8
= 24 bits = 3 bytes.

If we want to create a map for the English language alone, 255 characters (256 if we include zero)
will do it but there are many more languages with specific characters, e.g. accents, that need to
are represented as well —> we need many more bits!

Binary 01001000 01001001 00100001

Decimal 72 73 33

ASCII letter H I !

If we use enough bits we can map every possible character in every human language and then
some more. For example, emoticons are represented in the same way using a sufficient number
of bits. This new standard which is a superset of the ASCII table is called UNICODE. Unicode
uses 8-bit for backward compatibility, 16-bit or even 32-bits to represent accented letters,
emoticons, various symbols etc.

Representation of colours
In order to represent a colour we use a similar approach: we use a scheme, e.g. RGB, and a range
within this scheme, e.g. 0 - 255 (8 bits), to “measure” how much red, green, and blue a pixel
should have. For example, the decimal numbers 72, 73, 33 were interpreted as the characters
“HI!” using the ASCII table as a map. The same pattern, within the RGB scheme, would be
translated to a specific colour (R, G, B) = (72, 73, 33) —> yellowish.

So each pixel uses 24 bits (8 for red, 8 for green, and 8 for blue) in some pattern and a program,
e.g. Photoshop, interprets this pattern as black, yellow, pink etc.

At the end of the day, a picture, a video, a colour, a music note, or pretty much anything can be
represented as a pattern of 1’s and 0’s using some sort of mapping. From there it’s up to a
dedicated software, or program, to interpret these patterns correctly.

In modern days, compression and more advanced and complicated math is required to represent
the same information in a more elegant way, in order of a file or a program to handle multiple
mappings of information. However, the very foundations of how can we encode information are
the ones we described above.

Practice:

Write a function called “upper” that takes as an argument a character and it checks if this
character is lower case. If it is, it returns the upper case version of this character. In any
other case it returns the original character.

Test your function by converting the string literal “Hello World!” to all upper case letters.

Pointer fundamentals in C

Physical addresses in computer memory are locations that we do not physically control when they
get assigned. It’s the computer’s operating system that decides what will be stored where.

However, it is possible to store in a physical address if computer memory another memory
address. Because this stored variable points to another location within the memory, it is called a
pointer.

Pointer variables must be declared:

The asterisk, when used in declaration, tells the compiler that the variable is to be
a pointer and the type of data (the value that we get indirectly that the pointer points
to).

Reference operator: &
The ampersand indicates that we’re getting the address of a variable, e.g. &variableName.

Dereference operator: *
The asterisk has two different meanings: 

- When used in the declaration, it tells the compiler that the variable is to be a pointer. 

- When NOT used in declaration, the asterisk means “get the value that the pointer points to”. 

Practice:

Memory segments and organisation

Understanding how memory is managed is an essential concept in computing. Here we are going
to explore memory management in the context of the C programming language.

You may have wondered: what happens in memory with a program
when it’s run? When a program is run by the operating system, it will
call, as a function, the main method of your code. But your actual
process (your executable) will be held in memory in a very specific way.

 

‣ Text: actual code of our program (read-only: cannot be changed during execution) —>
machine instructions that we’ve compiled get loaded in this segment. It is placed in lower
memory address so its not overwritten by heap or stack. 

‣ Static data: uninitialised and initialised variables get held here, e.g. global variables. The
lifetime of these variables is for the entire duration of the program, and the size is fixed/known
at compile time. Variables can be changed, but we can also have read-only variables here
(constants). 

‣ Heap (a.k.a. dynamic memory): this is where we allocate large things in our memory. Lifetime
and size of allocated memory is on the discretion of the programmer. Poor management can
lead to heap overflow (memory leak), e.g. when we allocate memory but we are not freeing it
after we’re done using it. The functions used to allocate memory on heap are: malloc, realloc,
calloc, free. 

‣ Stack: holds the local variables for each of our functions during function calls. The lifetime of
the variables stored here is temporal and the (de)allocation is done automatically. The size of
stack memory grows when calling nested functions. Poor management can lead to stack
(buffer) overflow, e.g. when using recursion.

‣ Kernel: this segment holds command-line parameters that we pass to our program,
environment variables etc.

Static data

Text

Heap

Stack

Kernel

Free memory
Block of RAM:

Bottom of memory (small memory address, e.g.
0x000…)

Top of memory (large memory address, e.g.
0xFFF…)

The static memory
Global variables and the static keyword:

Example:

Notice that a variable stored in static memory has exactly one copy in memory address. So, each
time the foo function is called, it operates on the same memory address, incrementing its content
by one.

The stack memory
One of the main advantages of the stack memory is that allocation and deallocation of memory is
done automatically. Naturally, this is easier for the programmer. But the same feature can be
perceived as a disadvantage as well. That’s because lack of memory control is not always what
we want. Many times is crucial to be able to directly manage the memory.

Let’s see an example of how the stack memory operates differently than the static memory. The
code segment below is exactly the same as the example we presented previously in the static
memory section. The only difference is that we omit the static keyword, so all local variables are
stored in stack memory instead.

Notice that local variable “a” is automatically created and destroyed with each call of the foo
function. In other words, when a function returns, it will automatically deallocate all its local
variables that were stored in the stack memory.

We do not have one underlying copy of the variable: we are constantly creating and
destroying the variable with each function call.

Understanding how stack memory
operates

Stacks are organised in a Last-In, First-Out
(LIFO) order. That means when something is added
to the stack the last thing that was pushed in it will
be the first thing that will be able to get out (or
popped).

As an example, we see on the left a code segment
that is basically a series of nested function calls.
When the program is executed, the main function is
called. This creates a “stack frame” that contains
all the local variables and data related to the main
function. Since the main function is the first function
to be called, the main stack frame is pushed onto

the stack memory first.

Then the function foo3 is called, and all the
local variables and data related to that
function is pushed onto the stack next. After
that it’s foo2’s turn to be pushed onto the
stack, and finally foo.

Since foo is the last function that was pushed
onto the stack, the code contained within it is
the code that is currently running, hence the
stack frame of the foo function is the active
frame. All other variables that are not in foo’s
scope are “buried” being further up the stack
and their local variables are not available
(inactive frames).

When the foo function returns, the associated
stack frame is popped off the stack and that
part of memory is freed. Similarly, the stack
frames of foo2, foo3, and finally main
functions are popped. When the main stack
frame is popped the program is done
executing.

Take away message: every function call results in a new stack frame in memory containing local
variables. When the function returns, the stack frame is popped off the memory and all the data,
i.e. local variables, are lost.

Stack overflow in programming

To understand how a stack overflow error occurs let’s take a look
at the code on the left. This is an example of recursion where a
function calls itself. Recursion is a very powerful and useful tool
but needs caution.

The recursive code on the left demonstrates why: by initialising
the variable x to a positive integer, the if conditional within the foo
function is never evaluated to true. This causes the function to
call itself again and again; each call creates a new stack frame
and continues until the stack memory is exhausted. Eventually,
the program will fail because of stack overflow error. Notice that
the code would work fine if we had initialised the x variable to a
negative number.

The heap memory
The advantage of heap, or dynamic memory, is the direct control of memory. The obvious
disadvantage is that it forces the programmer to handle manually the memory, and explicitly
allocate/deallocate memory. It is also slower than stack memory.

Example:

Notes:

sizeof() —> gives the number of
bytes of its argument.

malloc() —> returns a memory
address of a specific size.

Example:

Notice that the address returned by
malloc is available outside the
function scope because that space
is available until the programmer
decides to free it.

So, what happens is when the foo
function returns, the ptr local
variable is destroyed, but ptr2 is
initialised to point to the same
location in memory where ptr was
pointing to.

Here we didn’t explicitly freed the
heap memory when we were
finished using it. Normally, we

should have included a “free(ptr2)” statement right after printing out the desired result. In this
particular program will not cause an issues because when a program terminates, all heap memory
is automatically deallocated but one should not rely on that!

Heap overflow in programming

Memory leaks caused by heap overflow error occur when the dynamic memory allocation
overflows the heap memory layout created by the operating system. The two possible scenarios
for heap overflow are:

1. If we continuously allocate memory without deallocating previously allocated memory space. 

2. Explicit allocation of large number of variables. 

Below we provide two code examples of these two scenarios. ATTENTION: DO NOT RUN THESE
CODE SEGMENTS IN YOUR SYSTEM!

Heap overflow: scenario 1

Heap overflow: scenario 2

Practice:

In section “Encoding information” you wrote a function called “upper” that was checking if
a character is lower case, in which case it returned the corresponding upper case
character.

Re-write the “upper” function but this time it should take as an argument a string and will
return a new upper case string. Make use of the heap memory for this purpose.

Write a function that will append a number to the end of an integer array of a certain size:

- Using only the stack memory 

- Using only the heap memory

Functions and Scope

There are two primary ways to send information into functions: 

1. Pass by value 

2. Pass by pointer (a.k.a. pass by reference)

Pass by Value

Let’s see the example below:

When passing by value it makes a copy of the original variable, that is stored in a different
memory location. The key is that we have two different locations where the value is stored! So, if
we change something, or modify in any way the variable “b”, the variable “a” will not be affected
because it’s stored in a different location.

Pass by Pointer
Similarly,

a

a

main scope

0x001

foo scope

b

0x002

b = a

pass to function

primitive value copy of
primitive value

main scope

b

foo scope

b = a

pass to function

0x001

Same memory location!

0x001

The key here is that we have the same memory location! That means if the value of the variable
that “b” pointer points to is somehow modified, do does the value pointer “a” points to, because
both “a” and “b” point to the same location.

Example:

In the example above, when the function addOne() is called, it operates on the x value (defined in
the main scope) that is stored in memory.

Practice:

Arrays and Strings in C

SPOILER: Arrays are pointers!

Arrays and strings (a string is nothing more than an array of characters that includes a null
terminator, ‘\0’, signifying the end of a string) are always passed-by-pointer in a function. This is
due to the enormous size arrays can reach, becoming cumbersome to copy (it takes a lot of time)
and store a copy of the original array (it takes a lot of space) in order to be passed-by-value.

Pass-by-pointer allows changing the value of a variable inside the function scope —> needs
caution!

Arrays as function parameters
Let’s take the example of a function that finds the largest integer within an array of numbers:

Key points:  

- The “const” modifier forces the array to be read-only inside the function scope. This prevents
ambiguous modifications of the array with the function. 

- Always pass the size for arrays (unless array is a string, in which case is not necessary). The
reason is we’re just passing a pointer that points to location in memory. So, we know where
the array starts in memory, but not where it stops (in strings we do know because of the null
terminator).

It is not trivial to make a function that returns an array! That’s because the function is returning
an address of a local variable, i.e. a chunk of memory that is no longer available once the
function returns (assuming the returning array was declared locally within the function scope).

Possible solutions to this problem are:

✴ Change original input, i.e. the function will not return a new, locally defined, array but it will
modify in-place the existing original array that accepted as argument. Notice that this array
has a different scope (possibly the main scope, if it’s define within the main function). 

✴ Pass in, as arguments, two arrays. We can define in the main scope a new array (the one we
want to store the output of the function) and pass it as an extra argument to the function. In
this case, the original array will be read-only (using the const modifier) and the output array
will be modified in-place, within the function scope. 

✴ Use heap memory region.

Remember: When you pass in an array as an argument to a function, you pass in the address of
the first element of the array!

Q: What happens if you try to iterate over the end of an array?

A: Sometimes it will throw an error of the sort “Error: Out of Bounds”. But sometimes it will
overwrite other data that happen to be stored in close proximity to the array, without
throwing an error! The latter is known as (stack) buffer overflow and is a common way to
attack systems and take control of the process (see buffer overflow attack).

Structures and Enumerations

✴ Structures: essentially they’re custom data types, called “composite” or “aggregate” data

types, because are built to aggregate in a whole bunch of other data types. In the example
below, we define a new data type called “Person”. A person here is defined by its first and last
name, age, and gender. 

✴ Enumerations: they are used to restrict the values a variable can take. A common example is
the following:

 
 

Notice that the variable “currentDay” can only take a value that is defined within the enumeration.
The output of this code will be: “Current day: 1”. That’s because, the first element of the

enumeration is equal to 0, the second element is equal to 1 etc, hence the elements are
enumerated (as the name suggests).

	Volatile vs non-volatile memory
	Can the operating system be stored on RAM?
	Where is Windows 10 stored?
	Representation of letters
	Representation of colours
	Reference operator: &
	Dereference operator: *
	The static memory
	The stack memory
	The heap memory
	Pass by Value
	Pass by Pointer
	Arrays as function parameters

