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Introduction

Artificial Intelligence (AI) combines cognition with computers and makes
autonomous dynamics possible. Complex Systems (CS) are hard to study
yet comprise a realm that is both fundamental and useful. The combination
of the two, i.e. AI and CS will lead perhaps to interesting scientific and
practical developments in the years to come.

Artificial Intelligence

The advances on AI in the last decades are astonishing and they seem to
have changed completely our way of living. From cell phones to banks,
to security to social interactions, AI seems to play an increasing role to
daily lives of billions of people around the world. On the other hand, it
does no seem to have yet penetrated science in a similar profound way.
Using Machine Learning (ML) in physics is relatively recent and certainly
it does not appear to have blossomed yet. Why would one want to apply
ML in physics? There are various levels to the answer of this question.
Machine learning may provide methods for handling physical systems that
are superior to traditional computational techniques. Having the code learn
about the system instead of simply modeling the physical system of interest
may led to serious simplifications in the actual representation of the physical
system of interest. On a more fundamental level one may ask whether the
system can actually modify itself through the (machine) learning process
and acquire new features. This Darwinian-like approach is not unlike the
mode of thinking, although much simper one, that we dedicate for nonlinear
complex systems.
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Complex systems

Ii is not very easy to define a ”complex system” since it depends also on the
features we are focusing in. Is a piece of metal a complex system? If we look
into the microscopic details of the metal we find that it comprises of a large
number of atoms and its physical properties stem from the complicated dy-
namics of the constituent atoms and electrons. The detailed understanding
of theses properties involves advanced theoretical and computational meth-
ods and many approximations. Yet, if we take this piece of metal and cut
it in two halves, these two parts will retain essentially all properties of the
original piece. Many of the functions of the metal do no depend on this
process of halving; for instance if we use the metal as a wire, cutting in have
does not change this feature.

Consider now a biological macromolecule such as a protein; it is also
made of a large-yet not as large as the metal-number of atoms. The protein
has many different physical and chemical properties that can be analyzed
and understood through exact or approximate methods. These methods
may be quite complicated, involved and cumbersome, but in many ways are
similar to the methodology we apply to the metal. Yet, there is a significant
difference with the metal, viz. the protein has a specific function within the
cell. In fact the workings of the cell depends on the function of the proteins
it includes. If we cut the protein in half, the protein ceases to function
and through it the organization of the cell may become problematic. This
property, viz. the loss of functionality when drastic changes are introduced
characterizes complex systems as well as distinguishes them from the rest.
The distinction is neither sharp nor well defined but nevertheless it easy
to see when we encounter it. Although biology furnishes the archetypical
complex systems, physical systems can also be complex. It appears that a
necessary condition for complexity is the presence of some form of nonlinear-
ity usually in the dynamical equations of motion. In fact, complex systems
arise from nonlinear systems.

Nonlinear systems

Nonlinearity is ubiquitus in science and it would seem at first superfluous
to reserve the term for an entire area of study. On the other hand, math-
ematical techniques that are based on linearity are so powerful and indeed
useful that many times tend to overshadow and hide the role of nonlinearity.
Linear algebra and linear differential equations are the ”bread and butter”
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of modern science and engineering. At the same time, Quantum Physics,
the powerful intellectual creation of the twentieth century is ”linear”. If
Quantum Mechanics that describes all physical processes in the world is
linear, what is the reason to invoke ”nonlinearity”? The answer is two fold.
On one hand, linearity on the level of partial differential equations (pde’s),
such as the Schrödinger equation may hide nonlinearity at a different level
expressed for instance through ordinary differential equations (ode’s). This
is particularly true when we consider interacting systems and a reduced
representation where some, perhaps not so relevant, aspects of the problem
are eliminated. The apparent linearity of the microscopic world and the
Schrödinger equation may be transformed to nonlinearity at a more inter-
mediate, ”mesoscopic” level of description where multiple interactions are
taken into account. In an simplistic form we may state that ”Nonlinear =
Linear + Mesoscopic”.

Integrability and chaos

In this work we focus primarily on sets of differential equations, ode’s and
pde’s. Integrability refers to the possibility of expressing the solutions of
differential equations in terms of known functions. For example, in the case
of the harmonic oscillator we have a second order linear ode that can be
solved through trigonometric functions. This system is clearly integrable.
In other cases the system is nonintegrable; for instance the famous Lorenz
model:

dx

dt
= σ(y − x) (1)

dy

dt
= x(ρ− y)− y (2)

dz

dt
= xy − βz (3)

where x, y, z are dynamic variables that depend on time t and σ, ρ, β are
system parameters. Edward Lorenz introduced this system in 1963 as a
simplified model for meteorology and he showed that the system is chaotic.
This means that the set of equations (1, 2,3) is nonintegrable, i.e. cannot
be solved in terms of known functions. Furthermore, there is sensitive de-
pendence on initial conditions, i.e. if we change slightly the initial state,
the system wonders around in a completely different part of its state space.
In chaotic systems the divergence of initially nearby trajectories takes place
usually exponentially fast with a rate determined by the largest Lyapunov
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Figure 1: The Lorenz (strange) attractor is a surface with fractal Hausdorff
dimension equal to 2.0627160, i.e. it slightly larger than 2. A trajectory
that on this attractor moves continuously between the two lobes without a
predictable character. In this figure ρ = 28.0, σ = 10.0 and β = 8.0/3.0

exponent. The Lorenz system generates for some parameters a chaotic at-
tractor, i.e. a surface with a fractional dimension that has the shape of a
butterfly and is called the Lorenz attractor. The shape is related the sen-
sitive dependence on initial conditions and presented as the Butterfly effect
where the flapping of the wings of a butterfly in Australia can change the
weather and its prediction in ...Boston!

Chaotic systems are in many ways similar to stochastic systems where
future evolution can be predicted only in a statistical sense. One interesting
question for chaotic dynamical systems is thus the possibility to use machine
learning in order to obtain a picture of their future evolution. In fact if ML
can give a better forecasting horizon in problems such as weather prediction,
a paradigmatic chaotic and complex problem, then its usefulness will prove
to be significant in science as well.

Discrete Nonlinear Schrödinger Equation

The Discrete Nonlinear Schrödinger (DNLS) equation is a fundamental non-
linear equation that appears in many areas of physics. It is discrete, meaning
mathematically that it comprises of multiple coupled ordinary differential
equations. It is also nonlinear, with a specific type of nonlinearity and thus



CONTENTS 5

makes it a significant candidate equation for the study of complex systems
with ML. It is also related to the Schrödinger equation, making it a sig-
nificant equation for the study of fundamental processes although its scope
goes much beyond these. In particular, the DNLS equation is a discrete
version of the famous, continuous Nonlinear Schrödinger (NLS) that is one
of the main pillars of Nonlinear Science. The NLS equation is one of the few
fully integral nonlinear pde’s that exist. We can apply the DNLS equation
in at least three areas of physics, viz. condensed matter physics, optics and
Bose-Einstein condensates (BEC). In condensed matter physics it models
the propagation of an electron or, more generally an excitation, in a ”dis-
crete” medium consisting of atoms or molecules while the nonlinear term
takes effectively into account the exciton-phonon interaction. In optics it
describes photon propagation in coupled nonlinear fibers while in BEC sys-
tems the mesoscopic dynamics of the condensate. The form of the DNLS
equation we will be using is the following:

i~
dψn
dt

= εnψn + V (ψn+1 + ψn−1)− χn|ψn|2ψn (4)

In the condensed matter interpretation we may think of an excitation that is
hopping in a one-dimensional lattice with nearest neighbor interaction term
V . The local site energy in each site is εn; this refers to a single energy
state available for the excitation in each molecule where it moves. The
basic unknown quantity ψn ≡ ψn(t) is the probability amplitude to find the
excitation at a given lattice site n. If the nonlinear parameter χn was equal
to zero for all sites n, then Eq. (4) is nothing but the Schrödinger equation
in the tight-binding approximation. For non-zero χn the DNLS equation
becomes nonlinear and acquires entirely new properties that stem from the
cubic nonlinear term.

The DNLS equation is fundamental in the understanding of complex
nonlinear systems as it encompasses essentially all effects that stem from
nonlinearity. For one and two degrees of freedom is integrable, for few de-
grees of freedom is chaotic while for very large, ”infinite” degrees of freedom
becomes integrable again in the form of the continuous NLS. In the inter-
mediate range of many degrees of freedom we find both order and disorder.
Order appears in the form of discrete breathers (of intrinsic localized modes)
while disorder as spatiotemporal complexity. The study of the DNLS equa-
tion is both very interesting and exciting as its results apply in many areas
of physics. Implementing machine learning methods to the DNLS equation
and other nonlinear systems provides a new frontier for nonlinear science.
We hope to learn how far we can go in the understanding of complexity with
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Figure 2: An excitation hopping from site to site with nearest neighbor
matrix elements V , local site energies εn, and nonlinearity parameter χn.
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these knowledge-based methods.
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Chapter 1

Discrete Nonlinear
Schrödinger Equation

The Discrete Nonlinear Schrödinger Equation (DNLS) or the Discrete Self-
Trapping Equation (DST) and describes properties of chemical, condensed
matter as well as optical or condensed systems where selftrapping mech-
anisms are present. These mechanisms arise either from strong interac-
tion with the environment or genuine nonlinear properties of the medium.
The DNLS equation was introduced in order to describe the dynamics of
a set of coupled nonlinear anharmonic oscillators and understand nonlinear
localization phenomena.[1] It can also be viewed as an equation describ-
ing the motion of a quantum mechanical particle interacting strongly with
vibrations.[2] As noted in the Introduction, if ψn(t) denotes the probability
amplitude for the particle to be at site n at time t,the DNLS equation reads:

i
dψn
dt

= εnψn + V (ψn−1 + ψn+1)− χn|ψn|2ψn (1.1)

where εn designates the local energies at cite n of a one dimensional crystal,
V is the nearest-neighbor wavefunction overlap and χn is the nonlinearity
parameter that is related to the local interaction of the particle with other
degrees of freedom of the medium. For simplicity we will take ~ = 1. We
will start by considering a lattice where the nonlinearity is homogeneous
throughout the system, viz. χn ≡ χ. This assumption will be lifted when
need be.

An infinite, discrete set of equations, such as the one of the DNLS equa-
tion, is viewed in two different ways, either as a discretization of a cor-
responding continuous field equation, or an equation describing dynamics

9
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in discrete geometries. In the case of DNLS, the corresponding continu-
ous field equation is the celebrated Nonlinear Schrödinger Equation. The
present exposition will take the point of view that the DNLS equation rep-
resents dynamics in a discrete one dimensional lattice. We will therefore not
relate properties of DNLS with the corresponding continuous NLS equation
except when we discuss infinite degrees of freedom.

The DNLS equation has a long history; in its time independent form was
first obtained by Holstein in his study of the polaron problem [3]. Subse-
quently derived in a fully time-dependent form by Davydov in his studies
of energy transfer in proteins and other biological materials [4, 5, 6, 7]. Eil-
beck, Lomdahl and Scott [1, 8, 9, 10] studied DNLS as a Hamiltonian system
of classical oscillators, focussed on analytical and perturbative results and
showed that bifurcations occur in the space of stationary states for different
values of the nonlinearity parameter. These bifurcations in the discrete set
of equations are associated with the nonlinearity induced selftrapping de-
scribed by DNLS. In order to understand the dynamical properties of DNLS
solutions, Kenkre, Campbell and Tsironis studied extensively the nonlinear
dimer, the smallest nontrivial DNLS unit[2, 11, 12]. The latter proved to
be completely integrable and from its complete solution a number of in-
teresting properties of selftrapping were obtained. Additionally, the effects
of nonlinearity on a variety of physical observables were studied leading to
predictions for possible experiments [13, 14, 15].

In this first part of the exposition we will discuss some of the general
properties of the discrete nonlinear Schrödinger equation both in small finite
systems but also in longer extended chains. We will focus primarily to
dynamical aspects of the DNLS solutions. These properties are pertinent to
applications of DNLS in condensed matter physics as well as optics.

1.1 Motivation

We will now motivate a “derivation” of the DNLS equation in a condensed
matter context. We start with the Hamiltonian:

H = (K/2)
∑
n

u2
n + (1/2)M

∑
n

(dun/dt)
2 +

∑
n

εn|n >< n|

−J
∑
n

[|n+ 1 >< n|+ |n >< n+ 1|]−A
∑
n

un|n >< n| (1.2)

This Hamiltonian represents an excitation moving in a one-dimensional
crystal while interacting with local (Einstein-type) oscillators. In Eq. (1.2)
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εn represents the local site energy at site n, J gives the magnitude of the
wavefunction overlaps of neighboring sites, |n > and < n| are related to the
probability amplitudes at site n whereas un is the displacement of the n-th
local oscillator. The exciton-phonon coupling term is diagonal in the |n >
basis and depends only on local oscillator displacements.

Following Holstein [3], we neglect the kinetic energy terms and expand
the time-dependent wave function as |ψ >=

∑
p ψp|p >, where the |p > rep-

resent Wannier states. Inserting this into the time-dependent Schrödinger
equation i(d|ψ > /dt) = H|ψ >, and using the orthonormality property for
the |p >’s, we obtain:

i
dψn
dt

= (K/2)
∑
m

u2
mψn + εnψn

−J [ψn−1 + ψn+1]−Aunψn (1.3)

Next, we eliminate the vibrational degrees of freedom by imposing the con-
dition of minimization of the energy of the stationary states [3]. Inserting
ψn ∼ exp[iEt] and using the normalization condition for the amplitudes ψp,∑

p |ψp|2 = 1, we get

E = (K/2)
∑
n

u2
n +

∑
n

[εn −Aun]|ψn|2 +

−J
∑
n

(ψn−1 − ψn+1)ψ∗n (1.4)

Imposing the extremum energy condition, i.e. dE/dun = 0, we obtain
un = A|ψn|2/K. Inserting this back into Eq.(1.3), we get:

i
dψn
dt

= (A2/2K)
∑
p

|ψp|4 + εnψn−J [ψn−1 +ψn+1]− (A2/K)|ψn|2ψn (1.5)

This last step represents a departure from the Holstein adiabatic approach
being valid only in the opposite limit, i.e. that where the vibrational degrees
of freedom adjust rapidly to the excitonic motion. In this anti-adiabatic
or antiabatic limit, it is still possible to retain the dynamics in the original
Eq. (1.3). The quantity (A2/2K)

∑
p |ψp|4 represents the total vibrational

energy. If we measure energies with respect to this background value, we
arrive to an effective nonlinear equation for the amplitude ψn(t):

i
dψn
dt

= εnψn − J [ψn−1 + ψn+1]− (A2/K)|ψn|2ψn (1.6)
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This closed nonlinear equation describes the effective motion of the “po-
laron” in the aforementioned antiabatic limit. The “time step” dt in the
time derivative should be understood as short compared to the time scale
of the “bare exciton motion” (proportional to 1/J) but long compared to
the fast vibrational motion (proportional to 1/K). We conclude that the
regime of validity of DNLS in the context derived above is in the range where
|J | << ~Ω, with Ω being the the frequency of the local Einstein oscillators.

Using V = −J and χ = A2/K we arrive at the form of the DNLS
equation already stated, viz.

i
dψn
dt

= εnψn + V [ψn−1 + ψn+1]− χ|ψn|2ψn (1.7)

1.2 Some General Properties of DNLS

In the previous section we showed how DNLS can be motivated in a solid-
state context. In an optics context, DNLS describes wave motion in coupled
nonlinear waveguides. When an electromagnetic wave is sent through a
nonlinear waveguide coupled to other waveguides in its vicinity, ψn repre-
sents the amplitude coefficient in an expansion of the electromagnetic field
in terms of the wave normal modes in the waveguide. Coupling causes power
to be exchanged among the waveguides. The nonlinear nature of the ma-
terials in each waveguide (coupler) can cause a “trapping” of power in one
of the waveguides. Selftrapping now happens in space rather than in time.
These features can be exploited in the design of optical ultrafast switches
with applications in optical computers [16, 17]. In order to address the op-
tics problem we rewrite DNLS in a slightly different form. Let us define
ψn ≡ c̃n, V ≡ −J , χ̃ ≡ A2/K and consider the independent variable t
not as time but the space variable in the direction of propagation. More
importantly we must change the normalization condition to

∑
p |ψp|2 = P ,

P being the total electromagnetic power injected into a waveguide system
(recall that P = 1 in the exciton problem). The DNLS equation can then
be written as:

i
dc̃n
dt

= εnc̃n + V (c̃n−1 + c̃n+1)− χ̃|c̃n|2c̃n (1.8)

and ∑
p

|c̃p|2 = P (1.9)
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We note that whereas in the optics problem we are interested in the
critical power Pcr that causes switching in space, in the condensed matter
problem we focus on the critical nonlinearity χcr that causes selftrapping
in time. We can show, however that the two problems are identical by
simply rescaling the variables; defining cn = c̃n/

√
P and χ̃P = χ transforms

Eq.(1.8) to

i
dcn
dt

= εncn + V (cn−1 + cn+1)− χ|cn|2cn (1.10)∑
p

|cp|2 = 1 (1.11)

We note that the nonlinearity parameter χ in the equation where the
total probability is normalized to one is equal to the nonlinearity parameter
related to the optical nonlinearities (Kerr nonlinearity) and the total power
injected in the system. Thus, for a system of weakly nonlinear couplers we
need an increased input power to accomplish similar results. In addition to
this property we observe that there are two conserved quantities, viz. the
norm (total power)

∑
n |cn|2, and the energy H, with

H =
∑
n

εn|cn|2 + V
∑
n

(cn−1 + cn+1)c∗n −
χ

2

∑
n

|cn|4 (1.12)

Assuming now εn = ε for all n and performing the transformation
cn → exp(−iεt)cn, we can eliminate the “energy term” from the equation
obtaining:

i
dcn
dt

= V (cn−1 + cn+1)− χ|cn|2cn (1.13)

This is the form of the DNLS equation we will be using when the molecular
or optical units are identical.

Equation(1.13) represents two equations for Re(cn) and Im(cn), or equiv-
alently for cn and c∗n; the equation for the latter is

i
dc∗n
dt

= −V (c∗n−1 + c∗n+1) + χ|cn|2c∗n (1.14)

In principle V and χ can have either sign depending on the physical prob-
lem at hand. For the exciton problem, χ must be positive [3], while V could
have either sign. For the optics problem, the sign of V is related to the initial
phase difference of the electric fields in different waveguides, while the sign
of χ depends on the nonlinear optical response of the waveguide material.
We will now show, however, that the transformation (V, χ)→ (−V,−χ) does
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not affect the site probabilities ρn ≡ cnc∗n (or the “transmission coefficient”).
It is easy to see that the transformation V → −V and χ→ −χ in Eqs.(1.13)
and (1.14) turns the first equation into the second and viceversa. In other
words, this transformation results in cn → c∗n and c∗n → cn. As a result
the site diagonal elements ρn ≡ cnc

∗
n = |cn|2 (site probability or “trans-

missivity”) remain invariant under this sign exchange if, at the same time,
the initial conditions are modified appropriately, viz. cn(0) → c∗n(0) and
c∗n(0)→ cn(0). Thus, for a complete parameter study it is sufficient to take
χ > 0 and consider the two possible signs of V . We will see that different
signs lead in general to different physical behaviors for ρn. In what follows
we normalize typically V to |V | = 1, and consider two types of boundary
conditions, periodic and open. Also, as mentioned earlier, we consider only
the special initial condition cn(0) = δn,1 corresponding to complete initial
localization of the particle (or power) to the first site.



Chapter 2

The Degenerate Nonlinear
Dimer

The simplest DNLS equation unit that can be analyzed is the degenerate
dimer. This is constituted of two sites, 1 and 2 with the same energies that
for convenience can be taken to be equal to zero, i.e. ε1 = ε2 = 0 and
identical nonlinearity parameters, i.e. χ1 = χ2 = 0. The resulting equations
are:

i
d

dt
ψ1 = V ψ2 − χ|ψ1|2ψ1 (2.1)

i
d

dt
ψ2 = V ψ1 − χ|ψ2|2ψ2 (2.2)

The set of Eqs. (—refDimer-1a,Dimer-1b) constitutes the degenerate
nonlinear dimer. This is a unique system since it is the simplest DNLS unit
that is actually fully integrable. As a result, many of the properties induced
by nonlinearity in this equation can be understood from the degenerate
dimer.

2.1 Bifurcation analysis

2.2 Density matrix equations

Since the nonlinear dimer equations are complex as well as nonlinear it is
appropriate to turn them into a corresponding set of linear equations. The
probability is normalized, i.e. |ψ1|2 + |ψ2|2 = 1 and, as a result, we ex-
pect the system of Eqs. (??) to reduce to three real ode’s. A physically

15
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motivated way to proceed is through the density matrix; the latter is de-
fined as ρmn = ψmψn

∗, where the star ∗ denotes complex conjugation. For
the nonlinear dimer the density matrix is a 2x2 matrix where the diagonal
elements denote occupation probabilities and the off-diagonal ones contain
phase information. In order to turn Eqs. (??) into density matrix equations,
we form the time-derivative of the (m,n) element of the density matrix for
m, n = 1, 2 as ρ̇mn = ψ̇mψ

∗
n and substitute the relevant terms on the RHS.

We obtain

ρ̇11 = iV (ρ12 − ρ21) (2.3)

ρ̇22 = −iV (ρ12 − ρ21) (2.4)

ρ̇12 = +iV (ρ1 − ρ22) + iχ(ρ22 − ρ11)ρ12 (2.5)

ρ̇11 = −iV (ρ11 − ρ22) + iχ(ρ11 − ρ22)ρ21 (2.6)

This set of equations is clearly nonlinear but some hints about the dynamics
is already discernible. To expose this we may now introduce further a new set
of variables, viz. s = ρ11 +ρ22, p = ρ11−ρ22, q = i(ρ12−ρ21), r = ρ12−ρ21

that are linear combinations of the diagonal and off-diagonal matrix elements
respectively. Simple algebra leads to

ṗ = 2V q (2.7)

q̇ = −2V p− χpr (2.8)

ṙ = χpq (2.9)

This set of differential equations is much simpler; we may use Eq. (2.7) in
Eq. (2.9) and obtain an equation for variables r and p as follows:

d

dt
r =

χ

2V

d

dt
(pṗ) (2.10)

Equation (2.10) can be fully integrated since its RHS is proportional to the
time derivative of p2; it has the solution:

r(t) = (r0 −
χ

4V
p2

0) +
χ

4V
p2 (2.11)

where r0 and p0 are the initial values of these variables. To continue, we
differentiate once Eq. (2.7), substitute q̇ from Eq. (2.11) while replacing
also the variable r with the value in Eq. (2.11). After these steps we arrive
at the second order equation for the probability difference p:

p̈ = −
[
(2V )2 + 2V χr0 −

χ2

2
p2

0

]
p− χ2

2
p3 (2.12)
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We observe that Eq. (2.12) is an equation similar to Newton’s second
law of motion were the probability difference p ≡ p(t) plays the role of the
position of a particle; on the LHS we have the acceleration term while on
the RHS the force that enables the motion. By multiplying both sides of Eq.
(2.12) with ṗ and integrating we obtain an ”energy conservation equation”
in the form

ṗ2 + V (p) = E0 (2.13)

V (p) =

[
(2V )2 + 2V χr0 −

χ2

2
p2

0

]
p2 +

χ2

4
p4 (2.14)

E0 = ṗ2
0 +

[
(2V )2 + 2V χr0 −

χ2

2
p2

0

]
p2

0 +
χ2

4
p4

0 (2.15)

In order to gain further intuition in the nonlinear dimer dynamics it is judi-
cious to study first the simpler case with perfectly localized initial conditions;
i.e. p0 = 1, q0 = r0 = 0.

2.2.1 Localized initial conditions

Effective classical particle motion

In this case the particle is placed completely initially on the first site while
no complex phases are involved. The set of dynamic Eqs. (2.15,2.14,2.15)
simplifies to:

ṗ2 + V (p) = E0 (2.16)

V (p) =

[
(2V )2 − χ2

2

]
p2 +

χ2

4
p4 (2.17)

E0 = (2V )2 − χ2

4
(2.18)

where ṗ0 = 2V q0 = 0. To simplify further the equations we rescale time to
τ = 2V t and introduce the variable ζ = χ/4V ; we have

(
dp

dτ

)2

+ V (p) = ε0 (2.19)

V (p) =
(
1− 2ζ2

)
p2 + ζ2p4 (2.20)

ε0 ≡
E0

(2V )2
= 1− ζ2 (2.21)
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We thus have the picture of a particle with mass equal to 2 that executes
dynamics in a quartic potential. To make the representation simpler, it is
preferable to absorb the nonlinear term 1 − ζ2 in the effective potential so
that the effective initial energy is independent of ζ and equal to zero. We
thus define

U(p) = V (p) + ζ2 − 1 ≡ ζ2p4 +
(
1− 2ζ2

)
p2 + ζ2 − 1 (2.22)

With definition of Eq. (2.22) the conservation of energy for the effective
particle becomes (

dp

dτ

)2

+ U(p) = 0 (2.23)

We plot the effective potential U(p) as a function of p for various nonlinear-
ities ζ in Fig. (2.1); the horizontal line denotes the initial particle energy
compatible with the localized initial conditions. Lets us follow the dimer
dynamics through this potential picture. In the linear dimer for ζ = 0 the
potential is purely quadratic and a particle starting at p0 = 1 simply per-
forms oscillatory motion between the two extremes at p = ±1. The time
dependent dynamics is purely trigonometric and the quantum particle sim-
ply oscillates completely between the two energy states available to if with
period equal to 2V T = 2π, i.e. T = π/V . Once ζ becomes non-zero the
potential U(p) starts deforming and becomes more shallow without however
loosing the contact points at p = ±1 with the horizontal-constant energy-
line. For small ζ’s the dynamics is qualitatively similar to the linear motion,
i.e. periodic dynamics between the two extremes. Since the potential is
more shallow the kinetic energy at the bottom is smaller and, as a result,
the dynamics becomes slower.

For the nonlinearity value ζ = 1/
√

2 ≈ 0.707 the second derivative of
U(p) at p = 0 becomes zero and the bottom of the potential becomes flat,
as in Fig. (2.1). It is clear that the particle dynamics is very slow for this
value of nonlinearity as the particle crosses from positive to negative values
of p. As ζ increases past this value, the quadratic term in the potential
becomes negative and and a barrier develops at p = 0. The effective particle
has to overcome this effective barrier- this means that the quantum particle
dynamics becomes even slower as it tries to tunnel from the first site to the
second one. The period thus of the periodic motion reduces as the nonlin-
earity value increases and actually becomes infinite at ζ = 1. This marks
the self-trapping transition where the quantum particle cannot cross com-
pletely to the second site and it simply reaches equipartition of probability.
In the effective particle picture, the maximum of potential U(p) at p = 0
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Figure 2.1: Effective potential motion for self-trapping with localized initial
condition. On the abscissa the probability difference p, in the ordinate the
effective potential U(p) = V (p) + ζ2 − 1. The horizontal line demarks the
initial energy while the red bullet the initial state.
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reaches the value ”zero”, i.e. U(0) = 0 and due to energy conservation the
particle that starts from p = 1 can only reach asymptotically this maximum.
The motion ceases to be periodic for this nonlinearity value and becomes
hyperbolic. Further increase of ζ shifts the maximum U(0) to ] values than
zero and the motion of the particle is again periodic yet incomplete. The
quantum particle can reach over to the other side only partially to a degree
that depends on the nonlinearity value. As nonlinearity increases without
limit the particle localization on the initial site becomes more pronounced.
The different regimes of the effective particle dynamics are portrayed in Fig.
(2.1).

Exact time dependent solution

In order to obtain the exact time dependent solution one has to solve the
differential Eq. (2.23) or Eq. (2.12) for the appropriate initial conditions.
We can write formally the solution of the former as

τ =

∫ p

1

dp′√
−U(p′)

=

∫ p

1

dp′√
−[ζ2p4 + (1− 2ζ2) p2 + ζ2 − 1]

(2.24)

We notice that by construction the values p = ±1 are roots of the potential
U(p); as a result we can express it in the simpler form

U(p) = (p2 − 1)(ζ2p2 + 1− ζ2) (2.25)

Making the substitution p = cos θ we have

τ =

∫ cos−1 θ

0

− sin θ′dθ′√
sin2 θ′(1− ζ2 sin2 θ′)

= −
∫ cos−1 θ

0

dθ′√
1− ζ2 sin2 θ′

(2.26)

Equation (2.27) is simply the definition of an elliptic integral of the first kind-
its inverse is a Jacobian elliptic function, specifically the Jacobian elliptic
cosine. Finally,

p(t) = cn[τ |ζ] ≡ cn[2V t| χ
4V

] (2.27)

2.2.2 Weierstrass solution

Once we have understood the dimer selftrapping transition, it is instruc-
tive to express the degenerate dimer solution in terms of the Weierstrass
elliptic function. In contrast to the Jacobi elliptic function approach, the
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Weierstrass solution is not as intuitive; however teh method is more straight-
forward and produces additional insight. We write the energy Eqs. (??) as(

dp

dτ

)2

= −ζ2p4 +
(
2ζ2 − 1

)
p2 + 1− ζ2 ≡ f(p) (2.28)

and introduce the standard polynomial function f(p) in the form

f(p) = a0p
4 + 4a1p

3 + 6a2p
2 + 4a3p+ a4 (2.29)

where a0 = −ζ2, a1 = 0, a2 = 2ζ2 − 1, a3 = 0, a4 = 1 − ζ2. The solution
of Eq. (2.28) or, equivalently, Eq. (2.29) is generally

p(τ) = psr +
f ′(psr)

4

1

℘(τ ; g2, g3)− 1
24f
′′(psr)

(2.30)

where psr is a simple root of f(p), primes denote differentiation wrt p while
℘(τ ; g2, g3) is the Weierstrass elliptic function with invariants g2, g3. Using
the simple root psr = 1 we have the explicit solution for the fully localized
initial condition:

p(τ) = 1− 1

2

1

℘(τ ; g2, g3) + 1+4ζ2

12

(2.31)

The values of the invariants are given by the following general expressions:

g2 = a0a4 − 4a1a3 + 3a2
2 (2.32)

g3 = a0a2a4 + 2a1a2a3 − a3
2 − a0a

2
3 − a2

1a4 (2.33)

that specialize presently as follows: or, finally

g2 = −ζ2(1− ζ2) + 3(ζ2 − 1)2 = (2.34)

4/3 ∗ ζ4 − 4/3 ∗ ζ2 + 1/12 (2.35)

g3 = −ζ2(2ζ2 − 1)(1− ζ2)− (2ζ2 − 1)3 = (2.36)

8/27 ∗ ζ6 − 4/9 ∗ ζ4 + 5/36 ∗ ζ2 + 1/216 (2.37)

The modular discriminant ∆ = g3
2 − 27g2

3 has the following simple form:

∆ = 1/16 ∗ z4 − 1/16 ∗ z2 =
1

16
ζ2(ζ2 − 1) (2.38)

The conditions ∆ 6= 0 or ∆ = 0with g2 > 0 and g3 > 0 lead to periodic
solutions for the dimer while ∆ = 0 with g2 ≥ 0 and g3 < 0 to non-periodic
ones.
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The discriminant ∆ determines the limiting behaviors of the full time
dependence of the degenerate dimer. We have specific clear cases; when
ζ = 0 we obtain ∆ = 0 while g2 = 1/12 > 0, g3 = 1/216 > 0. This the case
of the linear degenerate dimer with the known trigonometric time-evolution.
The limiting form of the Weierstrass function is in this case

℘(τ, 1/12, 1/216) = − 1

12
+

1

4
csc2(

τ

2
) (2.39)

The second case where ∆ = 0 is for the value ζ = 1, (assuming positive
nonlinearity); for this value g2 = 1/12 > 0 and g3 = −1/216 < 0 leading to

℘(τ, 1/12,−1/216) =
1

12
+

1

4
csch2(

τ

2
) (2.40)

Substituting these limiting forms back to the general solution of Eq(??)
we have respectively:

p(τ) = 1−1

2

1

℘(τ ; 1/12, 1/216) + 1+4ζ2

12

= 1− 2

csc2(τ/2)
= 1−2 sin2(

τ

2
) = cos(τ)

(2.41)
and

p(τ) = 1−1

2

1

℘(τ ; 1/12,−1/216) + 1+5
12

= 1− 1

1 + csch2(τ/2)
2

= sech(τ) (2.42)

We observe that the limiting cases of pure trigonometric evolution for ζ = 0
and hyperbolic one for ζ = 1 are easily recovered.

The specifics of the Weierstrass-based time dependent solution can be
analysed through the values of the pair (g3, ∆); the latter controls also the
half frequencies ω1 and ω3 of the fundamental parallelogram. Changes in
the signs of g3 and ∆ reflect changes in the Weierstrassian dynamics and
thus in the nonlinear dimer one. We notice four cases (Table 2)

ζ g3 ∆ ω1 ω3

(0,
√

2
2 ) + - Ω −Ω

2 + Ω′

(
√

2
2 , 1) - - |Ω|+ iΩ

2 -i Ω

(1, 1
2

√
3
2

√
2 + 2) - + |ω′| -iω

(1
2

√
3
2

√
2 + 2,∞) + + ω ω′

Table 2
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ζ g3 ∆ ω1 ω3

0 1
216 0 π i∞

√
2

2 0 - 1
64

(4−4i)Γ( 5
4)

2

√
π

(4+4i)Γ( 5
4)

2

√
π

1 - 1
216 0 −iπ ∞

1
2

√
3
2

√
2 + 2 0 1

512

4 23/4Γ( 5
4)

2

√
π

4i23/4Γ( 5
4)

2

√
π

The Weierstrassian analysis of the nonlinear dimer with localized initial
condition reveals that for four distinct values of the nonlinearity parameter
ζ we have changes in the characteristics of the motion. The values ζ = 0, 1
coincide with the ones obtained from the Jacobian approach. The former
corresponds to the linear dimer case while the latter signifies the location
of the selftrapping transition. It is easy to check that for the value ζ =√

2/2 ≈ 0.707107 the effective dimer potential becomes flat at p = 0 while
for yet larger values a local maximum develops. The dimer motion becomes
increasningly more sluggish, a tendency that will culminate at ζ = 1 with the

selftrapping transition. The characteristic value ζ = 1
2

√
2 + 3√

2
≈ 1.015052

occurs while the dimer is in the selftrapping regime-it demarks a change in
the slope of the initial time-evolution. The role of these four special values
of the nonlinearity parameter ζ is easier explored in phase space. In Fig. ()
we show the various regimes.
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