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instruction. Notable among them were J. S. Murty,
R. E. Bedford, M. S. Kamath and C. Balakrishnan. I
feel I owe a great debt to them for the personal help
and support that they provided me. Even more
important in my intellectual formation than their
inputs was the exciting atmosphere created by my
daily interactions with brilliant colleagues, my
classmates. They were an exceptional bunch; I have
seldom come across, anywhere in the world, the level
of intelligence and overall talent that they were blessed
with. I debated, quarreled and discussed, and learned
much from them. Some of them are no more. Especially
thinking of Rajan M. Ranade and Ashok C. Kulkarni,
close friends whose rooms flanked my own, I dedicate
this book, with sincere gratitude, to the memories of
those of my teachers and colleagues who have
departed, and to those who are still around.
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Preface

Procrastination gives you time to consider divergent ideas,
to think in nonlinear ways, to make unexpected leaps.

– Adam Grant

Procrastination, my dear wife has complained for fifty years, is the incessant
driving power behind my life. While I do not believe she is right, it is possible, I
think, that my fascination with nonlinear science, always from a safe distance so I
was not ever compelled to claim any expertise in the field, might have arisen that
way, as the modern thinker, Adam Grant, quips in the statement quoted above.

The title of the book you have in your hands, dear reader, is bound to raise
your expectations and make you anticipate profound discussions concerning the
philosophy of quantum physics and the exquisite nuances of nonlinear science.
Walking a fine line between wanting to get your attention by whatever proper means
available to me, and my commitment to practice honesty, I must admit, at the outset,
that this book is nothing more than a description of a casual but pleasurable adventure
I had for about a decade starting in the mid 1980s. That adventure occurred during my
e�orts to assist a few of my students, who were so inclined, to get their Ph. D.’s doing
theoretical research in nonlinear aspects of condensed matter physics. I learned just
enough about the subject for that purpose, primarily from my own escapades from
what I considered to be my main field of research (statistical mechanics), helped
always by books and by colleagues wiser than myself. There are no involved debates,
deep ruminations and sudden epiphanies reported here. A single mathematical entity,
the “Discrete Nonlinear Schrödinger Equation”, is the center of focus in this book,
along with simple ideas and calculations based on it. What I can certainly promise
the reader, however, is the expression of a tyro’s delight at learning about pretty
transitions and nifty connections discovered with a beginner’s joy in a beautiful field
of science.

Similarly to a recent book I have published on the subject of Memory Functions,
Projection Techniques and the Defect Technique (Kenkre, 2021), the intended reader-
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ship here is young starting-out theoretical physicists early in their research career, at
their postdoctoral or their advanced graduate stage. I visualize eager fresh researchers
searching for weapons of theoretical research, not yet hardened by the requirements
and rigors of their profession, inexperienced perhaps, but at their creative peak. I
believe that this book will provide them with simple concepts and tools they can use
to engage in useful research in theoretical physics even as they acquaint themselves
with interesting results in the field of nonlinear physics in condensed matter.

Quantum Mechanics is usually regarded as being linear in its structure. Linear
Algebra is, indeed, the underlying mathematical discipline necessary to construct it
and linear superposition of its wave functions or state vectors is a frequently occurring
phrase in discussions of the subject. Yet, the procedure to extract the expectation
value of an observable from the state vector (or wave function) surely involves a
nonlinear, to be precise, a bilinear operation. It is perhaps partly with an express
desire to return to linearity in this operation that von Neumann introduced the density
matrix so that observable extraction from the state could be done through the linear
trace operation. Arguably, the most important and discussed property of quantum
mechanical systems is superposition. Linearity is implicit in the statement that, if two
independent state vectors, amplitudes, or wave functions are appropriate to describe
a process, their superposition, i.e., a sum with constant multiplying coe�cients, is
also appropriate for such description. Linearity is also inherent in the properties
of the operators that represent all quantum mechanical observables. The fact that,
typically, the Hamiltonian of the system that operates on the state vector to yield the
time derivative of the latter is independent of the state vector, leads to linearity in
the time evolution.

However, there is an obvious problem with this way of thinking. While it is true
that classical mechanics is often thought of as being generally nonlinear by contrast,
it is well known that a reformulation analogous to von Neumann’s, that introduces
into classical mechanics Liouville densities, at once bestows linearity on classical
mechanics as well. The place of the commutation of the Hamiltonian with the system
density matrix in quantum mechanics is now taken by Poisson brackets involving the
(classical) Hamiltonian and the Liouville density (Balescu, 1975; Reichl, 2009). If
one (mistakenly) falls back on the nonlinearity of the classical equations of motion
for observables, e.g., the coordinates and momenta of the constituent particles or
degrees of freedom, and argues that this is special of classical mechanics, one rec-
ognizes one’s error immediately on noticing that the equations for the corresponding
operators for coordinates and momenta are also generally nonlinear. Linearity is
characteristic of the usual equation of motion for the state vector or wave function,
say the Schrödinger equation, or of the Liouville-von Neumann equation for the
density or density matrix. This is certainly not true of the Hamiltonian equations for
the observables or their corresponding operators.

Surely, we spend much time, as we should, with the process of finding eigenvalues
and eigenvectors of the Hamiltonian and other operators and rely, for the purposes
of calculation, on the mathematics of linear algebra. However, it is necessary to
be precise in one’s mind about what one means by the statement that Quantum
Mechanics is linear.
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We can assert without argument that, by the linearity statement, we at least mean
that, in the evolution equation

8\
3 | (C)i
3C

= � | (C)i,

the Hamiltonian operator � is not itself a function of | (C)i. In the title of this book,
we consider a violation of this assumption and study the e�ects of the interplay
of familiar quantum features with such nonlinearity. Investigations of a violation
of linearity on a fundamental level have been carried out by several illustrious
scientists (Weinberg, 1989; Leggett, 2002; Jordan, 2009). The last of the authors
cited has referred to George Sudarshan’s questions and insights into the problem. In
the context of the present book, the violation does not arise from any fundamental
source, rather from what is an approximate representation of the dynamics supposed
to arise from a coarse-grained description through the elimination of some of the
variables inherent in the dynamics.1

Specifically, our interest is in elucidating the consequences of the Discrete Non-
linear Schrödinger Equation (DNLSE). The equation arose originally in polaron
physics when phonons interact strongly with moving electrons, or with quasipar-
ticles such as other phonons, from the creative arguments of several investigators
(Landau, 1933; Pekar, 1954; Holstein, 1959a,b). Much later it also arose under the
guise of the Gross-Pitaevskii equation (Pitaevskii, 1961; Gross, 1961, 1963) in the
dynamics of Bose-Einstein condensates, and even formally in optical waveguides
and in the dynamics of classical anharmonic oscillators. My interest in this book
is primarily in the first area and to some extent in the second. I shall refrain from
touching the field of optical waveguides or anharmonic oscillators given that fine
expositions (Hennig and Tsironis, 1999; Eilbeck et al., 1985) already contain detailed
references to those respective areas.

The subject of nonlinear Schrödinger equations is teeming with activity and en-
compasses an enormous community of physicists and mathematicians. My purpose
will be to focus only on the discrete form of the nonlinear Schrödinger equation and
that too in spatially very small systems. From the multitude of expert treatments in
the area of nonlinear Schrödinger equations, even restricting to the discrete variety,
I especially mention two, (Ablowitz et al., 2004) and (Kevrikidis, 2009). Both are
excellent and can teach the reader valuable techniques and tools in the general field.
There are also other, similar, books on the subject with specialized slants, for in-
stance (Christiansen and Scott, 1990). For the general field of soliton physics, an
eminently readable presentation is Physics of Solitons (Dauxois and Peyrard, 2006).
Given all this wealth of material already available in the literature, it is important
to understand why I have undertaken to write this one. I believe it has a special
pedagogical element. The book is characterized by the fact that it o�ers a limited
treatment of the DNLSE in systems of small spatial extent, always taking advantage
of analytical solutions wherever possible. The details of this statement are explained

1 Thus, in one instance, the nonlinearity arises, or is supposed to arise, from the removal of phonon
degrees of freedom from a strongly interacting electron-phonon system.
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in Chapter 1. The restriction that we impose on our own sphere of analysis will allow
us to focus on simple matters with simple tools.

The work described in the pages of this book stems from about fifty publications
primarily within my own research group but also in those of closely connected
colleagues, that were produced largely during about a decade starting around 1985.
Interest in the so-called Davydov soliton (Scott, 1992) was greatly responsible for the
activity in the subject at that time.2 I believe the lessons learned as well as issues left
unresolved during that relatively brief spurt in research on the part of the community
focused on that topic are as timely today as they were then. My own activities were
not motivated by the Davydov problem except for using it as a backdrop. Despite
the elementary nature of the questions raised and treatments o�ered, I hope that the
reader will find something of value in these pages.

Given that I feel that the content of this book might be most useful to starting-
out researchers, let me venture to express my opinion to them that research in
theoretical physics comes in three flavors. One has to do with the explanation of
experiment. The central importance for the advancement of science of this kind of
activity is obvious. Einstein unravelling the essence of the temperature dependence
of the specific heat of insulators provides a clear example as do Bardeen, Cooper
and Schrie�er presenting their explanation for superconductivity. A second flavor
is that of seeking relations between formalisms with a view to establishing bridges
across theories: an excellent instance is Dyson’s building a lexicon that facilitated the
understanding of the connections between Feynman’s formalism on the one hand and
Schwinger’s on the other in their investigations of quantum electrodynamics. A third
type of activity of the theoretical physicist occurs when, starting with an equation or
similar mathematical object, one barges forward and discovers something interesting,
unexpected and surprising, and then presents the results to the experimentalist. The
discovery of waves of electromagnetic radiation from manipulations of Maxwell’s
equations happened, as we all know, in this manner. This last of the three flavors is
what permeates whatever is described in the present book. Experiments are analyzed
seriously but only in the spirit of designing them to see new e�ects; set puzzles are
not solved.3

2 Glimpses of the activity around the Davydov soliton proposal can be had in the Dauxois-Peyrard
book mentioned above. Much more attention is focused on it in the Christiansen-Scott book on the
DNLSE.
3 Each of these kinds of theoretical research is, no doubt, important to the advancement of our
branch of science. Most of us have tried all three, to various extents. The first is perhaps the most
di�cult. Some among my colleagues consider it the only kind worth pursuing, insisting theorists
to be no more than hired hands of experimentalists. At the other extreme lie some theorists who
confess that they have the ability only to work in the last of the modes mentioned. That mode
is, perhaps, the easiest as there is no goal set by others to meet. Of all three, this ‘forward’ kind
of research activity has less of puzzle-solving and has, I tend to think, more kinship to artistic
endeavors. My musician friends have often confided in me that the solving of set problems that
they believe to be characteristic of scientific work turns them o�. Dancing to one’s own tunes is
how they describe their own activity. That is why, among the theorist’s three avenues, the last one
mentioned above is the one I consider most akin to the artist’s manner of working.
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During the late 1980s in which my private obsession with nonlinear physics
proceeded with intensity, David Brown4 once reminded me that I had expressed
to him earlier that nonlinear science was for the birds. I am afraid it is true that
I had made that totally irresponsible remark. With hindsight, I conclude it was a
consequence of two items. Some contact, when a graduate student myself, with
Louis de Broglie’s writings on nonlinear quantum mechanics was one of them: I
felt convinced, with the irresponsible audacity of youthful ignorance, that they were
disjointed. The second reason was my strongly negative reaction later to studies of
the subject of chaos that many regarded (and regard) as the essence of nonlinear
science. Lack of wisdom, as also perhaps casual shallowness stemming simply from
lack of knowledge, had led me to discard the field as not suited to my research
aspirations.

What happened in the 1980s then to break my barriers of ignorance? It was simply
that, during my study of a simple system, the quantum nonlinear dimer that you will
meet in Chapters 1 and 2, I was surprised, in my own analysis, by a bifurcation
when I least expected it. Bifurcations and phase transitions are naturally fascinating.
From rubber bands that snap, to presidents that get ousted and empires that crumble,
instances of “something suddenly happens” always astound and intrigue. It is because
a bifurcation or transition sprang in my own simple work that I was turned on to the
subject.5

I would like to end these thoughts with a few general comments about nonlinearity,
particularly in condensed matter physics. The field is of gigantic proportions and
I heartily recommend to the reader the book by Alwyn Scott on the Nonlinear
Universe (Scott, 2007) in which he tackles a wide spectrum of issues, phenomena,
and activities in the subject. I am certain that the reader will be impressed by the
breadth of scope, and the intensity of involvement of the writer of the book in a
field which he greatly helped expand in his lifetime. Also available and strongly
recommended, is Alan Newell’s book (Newell, 1985) with focus on solitons. Written
by one of the originators of many techniques and insights in the field, it is a delight
to read.

At the introductory level, the textbook (Strogatz, 2018) is exceptional in its treat-
ment. Higher level instruction may be found in (Jackson, 1989, 1990) and (Nicolis,

4 He was an exceptional student who worked for his Ph. D. under my guidance, and was equally
comfortable with equations as with nuances of the English language. He went on to make valuable
contributions to the debates centering around the Davydov soliton through the publication of a
number of widely quoted papers coauthored with Katja Lindenberg and Bruce West.
5 I must confess I exited the field before I had learned a su�cient amount about the subject. May
I amuse the reader by explaining why. The brilliant scientist Elliott Montroll, who was one of my
mentors at that time, dispensed to me some advice during a car ride in the late 1970s to Dave
Dexter’s plantation outside of Rochester. Elliott said he was sharing with me his modus operandi in
physics research: solve an easy problem and rapidly get out of the field. He claimed that if you did
that wisely, others would spend oodles of time and energy on di�cult extensions of the problems
you had solved and during all that time would keep referring to your work! The strategy did not
work for me: Elliott neglected to tell me that the quality of the work also had to be substantial! I
happen to know that he himself kept on solving tantalizingly di�cult problems and was justifiably
credited all his life with outstanding solutions that he produced. I was not helped by attempting to
practice what he preached, perhaps jokingly, to his less capable colleagues such as myself.
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1995). For a specialized topic such as Synchronization, I suggest Gupta et al. (2018).
The numerous contributions of Alan Bishop and David Campbell, working together
and separately, are of immense value whether in their own researches (Bishop et al.,
1980; Campbell, 1987) or in the exciting conferences they put together and the groups
of investigators they helped form in the field of nonlinearity in condensed matter
over the years. A nice example is a brief overview (Campbell, 1987) that describes a
few selected topics in nonlinearity. For the humorous note in nonlinearity, I cannot
resist reminding the reader of the famous statement by Ulam (See for instance its
mention in (Campbell, 1987)) that referring to nonlinear science (as normally done)
as the study of mathematical systems and natural phenomena that are not linear, is
“like defining the bulk of zoology by calling it the study of ‘non-elephant animals’.”
But for more serious musings on the subject I heartily suggest to the reader to peruse
the Introductory Section in Landauer’s article “Nonlinearity: Historical and Techno-
logical View" (Landauer, 1987). I will content myself with the following extract:

The ambiguity in nonlinear is deeper, and reflects the mode of description. We tend to consider
classical motion in a constant, linear, or quadratic potential as linear and refer to anharmonicity
when we go beyond that. But the Hamilton-Jacobi equation, even for a free particle, is already
nonlinear. On the other hand the Schrödinger equation is always linear, no matter how complex the
potential, and as a limiting case can always describe the classical Hamilton-Jacobi equation. The
classical Liouville equation is also linear and represents the universal trick for making things look
linear, in the case of deterministic problems...The low field Hall current, in crossed electric and
magnetic fields, represents a linear conductance, if we consider the magnetic field to be a parameter.
If, however, we consider electric and magnetic fields as simultaneous components of a total elec-
tromagnetic field, then it is clearly nonlinear...It is possible that there is some kind of rational path
through this complexity, and that there is a broadly applicable definition of nonlinearity. I do not
know about it, and interpret nonlinear in a more phenomenological sense. Nonlinearity has to do
with thresholds, with multi-stability, with hysteresis, with phenomena which change qualitatively

as we change excitation.

OUTLINE OF THE BOOK

The mathematical entity around which considerations in this book revolve is,
as we have stated above, the Discrete Nonlinear Schrödinger Equation (DNLSE)
obeyed by the quantum mechanical amplitude of a particle. An introduction to the
equation and to its ability even in the absence of static disorder to localize the particle
when the nonlinearity exceeds a critical value is given in Chapter 1. To make exact
considerations possible, one introduces the analysis for a dimer, i.e., a system of
two sites. Potential considerations and graphical arguments are shown to lead to the
possibility of a sharp transition. The analytic tool of elliptic functions, particularly of
the Jacobian ilk, is then developed briefly with emphasis on their physical meaning,
the goal being to extract with their help explicit solutions of the problem. Such
extraction is done in Chapter 2 and the insights applied to two experimental situations,
one involving mobility of particles as in electrical conduction and the other having
to do with neutron scattering observations. Stationary states of the nonlinear system
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and their stability are also investigated here. The e�ect of the interplay of the initial
quantum phase of the particle with nonlinearity is studied in Chapter 3. Novel
phenomena are found to arise from such interplay and to lead to what appears
like another, di�erent, transition. Consequences are analyzed for experiments on
fluorescence depolarization of stick dimers under the assumption that the relevant
electronic excitation interacts strongly enough with molecular vibrations to justify
invoking the nonlinear description.

The quantum mechanical particle obeying the DNLSE studied in most part in
the book can be said to be, in the language of the condensed matter physicist, a
polaron. What the behavior of a polaron owes to its harmonic origins is studied in
Chapter 4. The cubic nonlinearity in the quantum amplitude that is characteristic
of the DNLSE arises from an interaction of the quantum particle with vibrations
which are almost always considered to be harmonic. What happens if the harmonic
assumption is relaxed is, thus, the subject of Chapter 4. Rotational polarons as well
as those arising from other natural realizations of anharmonicity are investigated.
Time evolution is studied as well as stationary states of the system. Appearance of
self-trapping on increasing nonlinearity is encountered as in the early chapters of
the book but the disappearance of self-trapping on further increasing nonlinearity is
the primary surprise in these rotational polarons and related systems. Criteria for the
continuous versus discontinuous nature of the transitions on varying the parameters
are also developed. The study of DNLSE systems with nonlinearities more complex
than simple cubic, whatever the mechanism for their turning cubic, can be considered
as the primary focus of the analysis in this Chapter.

Dropping back to the standard harmonic situation, equivalently cubic nonlineari-
ties, an attempt is made in Chapters 5 and 6 to understand behavior in systems more
complex than the simple site-resonant nonlinear dimer in other ways. A system-
atic study of the combination of a static energy mismatch and the dynamic energy
mismatch produced by the nonlinearity in the DNLSE forms Chapter 5. The first
case treated is, thus, the analysis of the nondegenerate nonlinear dimer. Weierstrass
elliptic functions that have been often used to arrive at final solutions are reviewed
and studied. However, a treatment that is based on Jacobian elliptic functions that
are much more familiar and approachable to the physicist is emphasized. A num-
ber of explicit analytic results that will be unfamiliar to most readers are provided
concerning quantities such as the period and the average values of site occupation
probabilities. Interesting transitions are described. An alternative method for the
analysis of the nondegenerate nonlinear dimer resulting in an integrodi�erential
equation with memory is also provided. In Chapter 6 we study systems of increased
size relative to a dimer. To retain the analytic nature of the investigations rather than
resort to numerical studies, this enquiry is carried out for systems in which transfer
interactions are of long range. Stated precisely, the limit considered is that of global
interactions, the spirit invoked being, thus, of a mean field theory. Interesting conclu-
sions are drawn and transitions are noticed. The second part of Chapter 6 addresses
the study of nonlinear trapping, also limited to global interactions. Bare-bones cal-
culations are presented in the context of the design of what could become artificial
photosynthetic machines.
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The assumption underlying the analysis reported thus far in the book is that the
(vibrational) relaxation that leads to polaronic formation is infinitely fast. This has
as its consequence that the energy lowering of the moving particle is instantaneous.
The assumption is dropped in Chapter 7. The resulting system, sometimes referred to
as the nonadiabatic nonlinear dimer, is analyzed in both extremes of damping: high
damping so the vibrational relaxation can be considered to be first-order in time, and
no damping of the auxiliary subsystem (e.g., the vibrations) so that the full second-
order evolution is maintained. The latter analysis tiptoes teasingly around chaotic
regions, but can be made to yield precise solutions in terms of elliptic functions for
certain values of the system parameters. Thermal e�ects constitute Chapter 8 and
are investigated in two analytic ways: via phase space considerations, and with the
help of the standard methodology of Brownian motion. Intriguing phenomena such
as Hopf bifurcations arise in the analysis and are shown to be reflected in suggested
experiments in fluorescence depolarization.

A brief return to basic questions regarding the emergence of the discrete nonlinear
Schrödinger equation from microscopic Hamiltonians involving the interactions of
the moving particle and system vibrations is the content of Chapter 9. It includes an
explicit comparison between results obtained directly via numerical solutions of the
quantum equations of motion and those that arise from two approximation schemes:
the memory function formalism on the one hand, and semiclassical equations of
motion on the other. This subject of the proper treatment of strong phonon interac-
tions with a quantum particle via semiclassical representations such as the DNLSE
is characterized by sharp di�erences of opinion in the community. One encounters in
this connection the extensive publications of Brown et al. (Brown et al., 1986a,c,b)
and a transparent analysis by (Lomdahl and Kerr, 1985; Kerr and Lomdahl, 1987).
One also finds the strongly critical analysis of Grigolini and his collaborators (Vitali
et al., 1992; Bonci et al., 1993; Vitali et al., 1994) who regard the DNLSE as emerg-
ing from an erroneous treatment of microscopic interactions between quasiparticles
and phonons. No one doubts that the DNLSE, in the systems we discuss, is to be
regarded as an approximation to the original linear system but one that describes
the essence of the physics when a kind of coarse-graining is performed, eliminating
a part of the full system. The di�erences of opinion refer to whether the approx-
imate description is sensible or whether it throws the baby out with the bath. My
development in the book will only scratch the surface in this area and recognize the
di�erences but suggest strongly that they constitute a problem that is still open and
deserving of further attention by interested investigators.

Those debates concerning the appropriateness of using nonlinear representations
of the quantum evolution equation do not arise in the same manner in the realm of the
description of Bose-Einstein condensates via the Gross-Pitaevskii equation although,
there too, a semiclassical description is meant in part. In the language used by
Scott and his collaborators, Christiansen and Eilbeck, the nonlinearity is essentially
intrinsic. Numerous reviews in the Bose-Einstein field, make this clear (Leggett,
2001). My own description in Chapter 10 of this book is spent on treatments of this
subject as initiated by Raghavan, Smerzi, Shenoy and their collaborators (Raghavan
et al., 1999b,c,d) in close contact with small-system analysis of the DNLSE. They
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also include two items to which I might draw the reader’s attention. The first is an
investigation that Raghavan and Smerzi carried out some time ago (Raghavan et al.,
1999d) in collaboration with me on the question of which of the transitions that arise
in the DNLSE approach survive when examined for purely quantum mechanical
systems: a subject that is again coming to the forefront of research in recent years
(Pudlik et al., 2014) and derives its importance from the fact that it deals with the
important issue of the connection between semiclassical and quantum descriptions.
The second consists of very recent proposals for observations that I have constructed
in collaboration with Andersen and Raghavan for BEC condensate tunneling and
similar systems.6

Several miscellaneous issues on the edges of our subject are discussed in Chapter
11. They include an application of projection operators to the derivation of memory
functions in a nonlinear system, a brief analysis of external agencies on small non-
linear systems carried out by consideration of time-dependent system parameters, an
investigation of the e�ect of anharmonicities in the vibration on the validity of the
semiclassical approximation probed with the help of a Pöschl-Teller potential, a study
of soliton propagation in boson-fermion mixtures, treatment of a nonlinear impurity
in a linear quantum mechanical chain, and some old but interesting calculations of
the formation of excimers and their intermediate so-called Y-states. An overview of
the book contents is also presented in this final chapter. Every chapter has, at its
end, a brief summary of what has been explained in the chapter. Consonant with
the idea that the book targets in part the education of advanced graduate students
and young postdoctoral scientists, exercises are sprinkled throughout the book, with
hints provided for their solutions in several instances. A bibliography of references
is provided at the end.

6 See John D. Andersen, Srikanth Raghavan, V. M. Kenkre, http://arxiv.org/abs/2108.08711
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Chapter 1
The Discrete Nonlinear Schrödinger Equation
and the Two-State System (Dimer)

1.1 Introduction

Consider the motion of a quantum particle moving among the sites of a translationally
invariant crystal denoted by m and n, the latter being vectors in an appropriate number
of dimensions, for instance three. The motion is occurring via +mn, which may be
taken to be interaction matrix elements between the mth and nth Wannier states of
the crystal. The particle might be an electron, an electronic or vibrational excitation,
or a heavier object such as a muon or an interstitial atom that is free to move through
the crystal. In the theory of electrons in solids (Wannier, 1959; Anderson, 1997)
such motion is characterized by Wannier states (or their Fourier transforms, the
Bloch states) each associated with a band index and a value of the quasimomentum
also known as the crystal momentum. The latter spans the Brillouin zone, its allowed
values being equal to the number # of sites in the crystals. The number of bands,
on the other hand, is infinite; this corresponds to the intervening space between sites
being continuous. Considering only a single band, equivalently under the assumption
that we take into account the particle existing only at the sites and not in the space
intervening, we might write the equation of motion for the quantum mechanical
amplitude 2m for the particle to be at site m as

8\
32m
3C

=
’

n
+mn2n � j |2m |

2
2m. (1.1)

The two features of the equation that remind us that the system is quantum mechanical
are the presence of 8 =

p
�1 in the left hand side and the symbol \ that represents,

of course, the ratio of Planck’s constant and 2c. Throughout the book, we will use
the notation whereby we put \ = 1. This means that it has been absorbed into the
quantities j and+mn by division.1 Unless mentioned otherwise, we will take the sign
of j to be positive. The motivation arises from its being given in polaronic contexts

1 This has the obvious consequence that, throughout the book, energies have the same units as
frequencies.

1



2 1 Discrete Nonlinear Schrödinger

by a quantity proportional to 62
l (6 is a dimensionless coupling constant) and l is

typically a vibrational frequency. Both 62 and l have positive sign. It is possible,
nevertheless, to have an e�ective negative sign for j simply from a negative sign for
+ . Such can easily arise from the band energy curvature according to whether the
moving carrier comes from the bottom or top of the band.

If we restrict our attention to a 1-dimensional chain of sites and consider the
particular case of nearest-neighbor interactions, the form of the equation (1.1) we
must consider is

8

32<

3C

= + (2<+1 + 2<�1) � j |2< |
2
2<. (1.2)

Because Eq.(1.2) will be the center of our attention throughout the book, it is
wise to assign to it a name. The quantity C<, obtained by multiplying the quantum
mechanical amplitude 2< by the phase factor 48q (C) , obeys

8

3C<

3C

= + (C<+1 + C<�1) � j |C< |
2
C< + 8

✓
3q(C)

3C

◆
C<. (1.3)

The choice q(C) = 2+C yields, therefore, an evolution equation for C< which, in the
continuum limit, leads to

8

mC(G)

mC

= ⇡
m

2
C(G)

mG
2

� ⌫ |C(G) |
2
C(G). (1.4)

The continuum limit means that the distance 0 between nearest neighbor sites van-
ishes, i.e., 0 ! 0 and + , j ! 1 such that +02

! ⇡ and j02
! ⌫ and, of course,

C</0 ! C(G).
Equation (1.4) already has a well-established name in the literature: the nonlinear

Schrödinger equation. The motivation for the name should be quite clear when one
recalls the form that the ordinary (linear) Schrödinger equation takes for a free
particle. “The discrete nonlinear Schrödinger equation” thus suggests itself as an
appropriate name for Eq. (1.2). This name has been employed in the literature for
several decades now.2 We will use it throughout the book.

There is another equation on the discrete chain, closely allied, that also has Eq.
(1.4) as its continuum limit, and is, moreover, exactly soluble. This is the Ablowitz-
Ladik equation (Ablowitz and Ladik, 1976) given by

8

32<

3C

= + (2<+1 + 2<�1 � 22<) � j |2< |2 (2<+1 + 2<�1). (1.5)

It is Eq. (1.2), however, that emerges naturally as a consequence of the physical
arguments that we are interested in here. Equation (1.5) represents, instead, a situation
in which the cubic nonlinearity modifies the intersite interaction matrix element
rather than the site energy. A great deal of work has been done on the Ablowitz-
Ladik equation because it constitutes an integrable system. This means that explicit

2 The phrase the “discrete self-trapping equation” (Eilbeck et al., 1985) has also found use in certain
circles.
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solutions for the chain with infinite spatial extent can be found and examined with
ease, something that is not the case with the DNLSE (1.2).3

1.2 A Numerical Study Indicating The Appearance of a
Self-trapping Transition

Analytical solutions of the DNLSE, Eq. (1.2), have not been found. One way to
understand whether the structure of the equation does result in self-trapping behavior,
and how, is to carry out numerical studies. For this, you place the quantum particle
at one of the # sites of a periodic ring at the initial time and work out the evolution
through numerical algorithms. You change # until it is large enough and further
increases do not show much variation in what you observe. Then the finite ring may
be taken to emulate the infinite line. Much expert work (Cai et al., 1994) has been
done in this manner to investigate various phenomena. Let us implement a simple
version of such studies. What is observed as the probability %0 (C) = |20 |

2
(C) of the

initially occupied site is plotted in Fig. 1.1 for several values of the nonlinearity j
as shown.

For vanishing nonlinearity, discrete Fourier transforms yield the analytic solution,
%0 (C) = �2

0 (2+C), and the numerical curve computed for this case coincides precisely
with that analytic solution. This is clear in the plot. Increase of nonlinearity shows
quite transparently that the particle moves with less mobility. Although numerical
work of this kind cannot ever show us the consequences with certainty, it does look
likely there is a transition which describes self trapping of the particle at a specific
value of the nonlinearity parameter. High values of j appear to result in the particle
being essentially stuck around the site at which it is placed initially.

The density matrix evolution equation that is a consequence of the DNLSE, given
that d(C) = | (C)ih (C) |, is

8

3d<,=

3C

= + (d<+1,= + d<�1,= � d<,=+1 � d<,=�1) � jd<,= (d<,< � d=,=). (1.6)

Approximate treatments of this equation do also result in indications that a self-
trapping transition is in the works. However, given that numerical analysis requires
specialized skills to avoid pitfalls that can arise from computing artifacts, in order
to be certain of what is going on, let us undertake the analysis of a system of small
size with the hope that it might be analytically soluble.

3 Investigators have even analyzed combinations of the two equations in a form that some of us
associate with the name of Salerno (Enol’skii et al., 1991, 1992). A cogent explanation of the two
extremes is available in (Hennig and Tsironis, 1999).
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Fig. 1.1 Numerical solution for self-trapping on an infinite chain on which a quantum particle is
moving via nearest-neighbor interactions + via Eq. (1.2) which contains a cubic nonlinearity at
the occupied site controlled by the parameter j. A ring of # = 100 sites is taken to represent the
infinite chain: results do not change visibly on increasing the number of sites beyond that value.
The time dependence of the probability of the initially occupied site is plotted as a function of + C
for successively increasing values of j. Six values of the latter relative to + are considered: 0,
1.8, 3.6, 4.2, 5, and 10. They are indicated next to the respective curves for the time-dependence
of the probability of the initially occupied site. The leftmost curve, for j = 0, is indistinguishable
from the analytic solution � 2

0 (2+ C) for a linear chain of infinite # , where �0 is the Bessel function
of zero order. The analytic curve is sitting right on top of the numerically computed curve. As
j/+ increases, we notice a slowing down of the particle and a transition to what appears to be
self-trapping somewhere in the neighborhood of j/+ = 4. For higher nonlinearities, the particle
is clearly trapped near where it is placed initially. Copyright Vasudev M Kenkre, 2021. All Rights
Reserved.

1.3 Density Matrix Equations for a System of Very Small Size

If we consider the system to be a dimer, i.e., consist of only two sites 1 and 2, the
density matrix equations take the form (Kenkre and Campbell, 1986)
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3d11

3C

= �8+ (d21 � d12), (1.7a)

3d22

3C

= �8+ (d12 � d21), (1.7b)

3d12

3C

= �8+ (d22 � d11) + 8j(d22 � d11)d12, (1.7c)

3d21

3C

= �8+ (d11 � d22) + 8j(d11 � d22)d21. (1.7d)

and can be written in terms of the probability di�erence between the two sites,
? = d11 � d22, and the other two real quantities comprising components of the
so-called Bloch vector, @ = 8(d12 � d21) and A = d12 + d21.

The time evolution of the Bloch vector follows

3?

3C

= 2+@, (1.8a)

3@

3C

= �2+? � j?A, (1.8b)

3A

3C

= j?@. (1.8c)

Let us focus on the evolution of the probability di�erence, consider the initial
localized condition on one of the sites so that ?(0) = ±1 and @(0) = 0 = A (0),
eliminate @ and A , and write the closed equation for the probability di�erence as

3
2
?

3C
2
= �? � ⌫?3

, (1.9a)

� = (j
2
/2) � 4+2

, ⌫ = j2
/2. (1.9b)

There are two obvious ways to proceed to extract information from this nonlinear
equation for ?. One is to regard ? as representing the displacement of a particle and
Eq.(1.9) as describing the acceleration of the particle under a ?-dependent force. We
can then apply the standard energy method of classical mechanics to proceed further
from that equation by multiplying it by 3?/3C and integrating once to get a potential
* (?):

* (?) = (�/2)?2
� (⌫/4)?4

. (1.10)

The potential can now be plotted and used for graphical studies of the motion.

1.4 Considerations via Potentials

Potentials constructed in this manner are displayed in Fig. 1.2 for various values of
the ratio of the nonlinearity j to + for initial placement of the particle at one of
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Fig. 1.2 The p-potential* (?) for the dimer given in Eq. (1.10) for various values of the ratio of
the nonlinearity parameter to + as marked in the plot: 0, 2, 4, 6, 8. Graphical inspection indicates a
transition at the critical value 4 of this parameter as the system would oscillate on both sides of the
plot for lower values but only on one side for higher values. Note the importance of the horizontal
dash-dot line to the graphical argument behind the transition. It marks the energy of the classical
representation of the system with displacement ? that remains constant throughout the evolution
and thereby shows pictorially that the particle would take infinite time at the transition to go to the
other side. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

the sites. For vanishing j, the potential is parabolic (marked 0 in the plot) and the
particle rolls back and forth in the potential following a (sinusoidally) oscillating time
dependence. As j/+ increases, the potential flattens because of the contribution of
its quartic piece with the consequence that the particle clearly takes longer to oscillate
within its bounds. See, for instance, the potential marked by the value 2 of j/+ . With
further increases in the nonlinearity a double-well nature develops. The value 4 of
the ratio is critical and self-trapping sets in (the potential curve is shown thicker
for this case). For nonlinearity greater than this value, swishing occurs in only the
right well. At the transition, the particle takes infinite time to move to the left well.
The horizontal line (dash-dot) drawn leftwards from the point of intersection of the
potential with the vertical at value ? = 1 is tangential to the potential curve at its
central maximum. It is this graphical feature that shows that we have self-trapping
and that the particle takes an infinite amount of time to move from the right of the
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plot to the left. Further increase in the nonlinearity makes the (double) wells deeper,
signifying less transfer and lower mobility.

More familiarity with what happens in the problem can be gained by obtaining
the explicit time dependence of the solutions. For this purpose, let us arm ourselves
with some brief essentials of elliptic functions, return to the nonlinear equation (1.9),
and obtain the time dependence of ? with their help.

1.5 Arming Oneself with Elliptic Functions

Everyone is familiar with the relation that exists between trigonometric and hyper-
bolic functions as a result of de Moivre’s identity

4
8 \ = cos \ + 8 sin \.

The relation is between the trigonometric sine and the hyperbolic sine in that
sinh 8\ = 8 sin \ and cosh 8\ = cos \. However, there also exists a quite di�erent
connection between trigonometric and hyperbolic functions, one that teams up the
sine with the hyperbolic tangent and the cosine with the hyperbolic secant!

If you can imagine holding two adjacent peaks of a sine function, one positive
and the other negative, and pulling them in opposite directions to plus and minus
infinity, you will see that the stretch can be said to result in the sine converting
itself into a function that rises to the value 1 on one side of the origin and drops
to the value -1 on the other side, turning itself into a hyperbolic tangent. In the
same way, you can turn a cosine into something that looks like a hyperbolic secant
through a stretch by grabbing a cosine at the location of two of its adjacent zeros and
stretching it similarly. This is visually apparent in Fig. 1.3 where the stretch of the
sine is depicted in the left panel while that of the cosine is in the right panel. In this
manner of regarding the functions, the hyperbolic function that the trigonometric
sine (cosine) is related to, emerges as the hyperbolic tangent (secant).

1.5.1 Definition of the Elliptic Sine and Related Functions

Let us make this stretching idea more precise by introducing the functions through
their integral definition. Let us recall that Newton’s equation for the simple pendulum
or for the harmonic oscillator of unit frequency,

3
2
G

3C
2
+ G = 0

has as its solution the trigonometric sine if the initial condition is that G(0) = 0 at
the initial time. Thus, G = sin C means that
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Fig. 1.3 A surprising connection between trigonometric and hyperbolic functions. Holding the
peaks of a sine (solid line) and stretching the curve in opposite directions to infinity suggests that
one might attain the shape of a hyperbolic tangent (dash-dot line). This is clear in the left panel.
Similarly, in the right panel, holding the cosine curve (solid line) at the points where it crosses
zero and stretching in a similar manner suggests a transition of a shape to the hyperbolic secant
(dash-dot line). Notice that trigonometric functions are profoundly di�erent from their hyperbolic
counterparts in that they oscillate and the latter do not. The connection suggests the introduction
of elliptic functions as intermediate entities that reduce to trigonometric and hyperbolic limits of
a parameter : as it takes on values ranging from 0 to 1. See text. Copyright Vasudev M Kenkre,
2021. All Rights Reserved.

C =
π

G

0

3I

p
1 � I2

. (1.11)

We also know that the stretch limit tanh C suggested by the plots is similarly defined
via an integral that has in its denominator the square of the denominator in Eq.
(1.11): To say that G = tanh C means that

C =
π

G

0

3I

1 � I2
=

π
G

0

3I

p
1 � I2

p
1 � I2

. (1.12)

Could we find a way of defining a new intermediate function fn(C) that might lie
between the trigonometric sine and the hyperbolic tangent and tend to each in the
appropriate limit? Consider a definition G = fn(C) such that

C =
π

G

0

3I

p
1 � I2

p
1 � :2

I
2
. (1.13)

The quantity : should be thought of as continuously changing from 0 to 1 and to
yield, at the limits, the sine and the hyperbolic tangent.
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Fig. 1.4 The Jacobian elliptic sine showing its shape variation with the elliptic modulus :. The
upper panel is a 33 plot showing that for : = 0 (front region nearest to the reader) the shape is that
of a trigonometric sine but that as : increases the shape varies substantially, taking the form of a
hyperbolic tangent as : tends to 1 (back region farthest from the reader). This is made clearer in the
23 plots in the lower panel where the : values are indicated as being respectively the extremes 0
and 1 as also an intermediate value 0.99. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

The function so defined is called the elliptic sine: G = sn(C, :).4 We see in Fig.
1.4 a depiction of the elliptic sine showing how it changes its shape as the elliptic

4 An important point needs to be stressed here about notation that can cause confusion in the
literature. Typically, the quantity : defined in Eq. (1.13) is called the ‘elliptic modulus’ and
is written after a comma following the argument of the function. In many places, the notation
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modulus (as the parameter : is called, changes from 0 to 1). In the 3-dimensional
representation in the top panel, the time evolution of the elliptic sine is seen to change
from the circular (trigonometric) sine at the front of the Figure where : is small, to
the hyperbolic tangent at the back of the Figure where : is larger, i.e., near 1. How
this change in shape happens as : is varied is made clear by the 3-d plot. In the lower
panel, the intersection of the surface plotted in the upper panel with three planes
produces the time dependence of the elliptic sine not only for the extreme values
: = 0 (dash-dotted line) and : = 1 (solid line) but also for an intermediate value
: = 0.99 (dotted line). This graphical depiction should make clear to the reader the
rich content of the elliptic sine which makes it display such di�erent shapes as : is
changed. We will see in the next Chapter that such behavior will be closely related
to the sharp behavior of the physics underlying the DNLSE.

Equation (1.13) means that, if you take the derivative of C with respect to G and
take the reciprocal of the result, you get

3G

3C

=
p

1 � G2
p

1 � :2
G

2
.

If we define the two factors in the preceding expression as additional functions of C,
and call them, respectively, the elliptic cosine cn(C, :) and the elliptic dn-function
dn(C, :), we add several new tools to our repertoire of elliptic functions:

sn2
(C, :) + cn2

(C, :) =1, (1.14a)

:
2sn2

(C, :) + dn2
(C, :) =1, (1.14b)

3

3C

sn(C, :) = cn(C, :)dn(C, :), (1.14c)

3

3C

cn(C, :) = � sn(C, :)dn(C, :), (1.14d)

3

3C

dn(C, :) = � :
2sn(C, :)cn(C, :). (1.14e)

Equations (1.14d) and (1.14e) come from di�erentiating (1.14a) and (1.14b). An
application of the last three entries of Eq. (1.14) carried out twice in succession
results in closed second-order equations obeyed by each of the elliptic functions
involving their first and third powers. For the cn function the result is, as the reader
should explicitly demonstrate,

3
2
H

3C
2
= (2:2

� 1)H � 2:2
H

3
, (1.15)

G = sn(C |<) is used the quantity < = :2 being called the ‘elliptic parameter’. The separator used
is the vertical bar rather than a comma. The specific terminology has been sometimes mixed up or
misrepresented in the literature. This can be particularly dangerous in calculations. For instance, in
software implementations, < is often used with a comma separator. It is safe to define the elliptic
function through an explicit statement such as (1.13). Throughout this book we will use : as the
quantity, comma as a separator, and ‘elliptic modulus’ as the term.
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where H = cn(C, :).
An equivalent manner of introducing sn, cn, and dn is from the integral represen-

tation

C =
π

i

0

3\

p

1 � :2 sin2
\

, (1.16)

the three Jacobian elliptic functions being simultaneously defined as

sn(C, :) = sin i, cn(C, :) = cos i, dn(C, :) =
q

1 � :2 sin2
i. (1.17)

It is straightforward to see that the elliptic sine becomes identical to the hyperbolic
tangent at : = 1 and to the trigonometric sine at : = 0, that the elliptic cosine
becomes the hyperbolic secant and the trigonometric cosine at these respective
limits, and that the dn-function equals the hyperbolic secant just as the cn-function
does at : = 1, but is the constant 1 at : = 0. If you have not encountered elliptic
functions earlier, their visual shapeshifting illustrated in the example of the elliptic
sine displayed in Fig. 1.4 should instruct and impress you at the same time.

Of direct use in the description of the DNLSE is the time dependence of the
elliptic cosine. We show it in Fig. 1.5 for four values of : : 0, 0.99, 0.999, 1. The
first case is the trigonometric cosine. As : increases, the period of the function
increases until at : = 1 it becomes infinite and the function becomes identical to the
hyperbolic secant. We will find below that the variation of : corresponds directly to
the variation of physical observables of interest and that when : increases beyond
the value 1, the elliptic cosine becomes the dn function (not shown in Fig. 1.5) and
oscillates only above the value 0.5.

1.5.2 Some Useful Properties of the Jacobian Elliptic Functions

My intent in providing some of the results and rules of Jacobian elliptic functions
here is by no means to serve as a substitute for standard instruction in a book on the
subject such as (Abramowitz and Stegun, 1965; Bowman, 1953; Byrd and Friedman,
1971). Rather, the purpose here is to make the reader familiar with the functions so
that it will become easier to think in terms of them. With that in mind, allow me to
display a small sampling of their properties selected from what we will use in our
book.

The period )of the elliptic sine and cosine is 4 while the period of the elliptic
dn function is 2 where  is the so-called complete elliptic integral of the first kind
defined by putting G = 1 in the upper limit of integration in Eq. (1.13):

 (:) =
π 1

0

3I

p
1 � I2

p
1 � :2

I
2
. (1.18)

This quantity equals c/2 for : = 0 and increases as : increases, becoming infinite at
: = 1. The period of the dn-function is half of the period of the other two functions:
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Fig. 1.5 The variation of the shape of the Jacobian elliptic cosine as the elliptic modulus : is varied
with the respective (indicated) values 0, 0.99, 0.999 and 1. In the first and the last cases the function
is identical to the trigonometric cosine and the hyperbolic secant respectively. When : exceeds
1, the elliptic cosine turns into a dn function (not shown) that oscillates only in the upper half of
the plot and this marks a physical transition as will be shown in Chapter 3. Copyright Vasudev M
Kenkre, 2021. All Rights Reserved.

it is 2 (:). The dn-function oscillates twice as fast as its two companions. An
associated period, useful in the complex plane, is  0 defined as (we give here the
alternate angle form of the integral),

 
0 =

π
c/2

0

3\p
1 � (1 � :2) sin2

\

. (1.19)

We will use  0 only to define the ‘nome’ @ = 4
�c 

0
/ that will appear in an

expansion of the functions.

1.5.3 Trigonometric and Hyperbolic Approximations

For small values of : , the following trigonometric approximations apply,
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sn(C, :) ⇡ sin C � (:
2
/4) (C � sin C cos C) cos C, (1.20a)

cn(C, :) ⇡ cos C + (:
2
/4) (C � sin C cos C) sin C, (1.20b)

dn(C, :) ⇡ 1 � (:
2
/2) sin2

C, (1.20c)

while for : nearing 1, the following approximations in terms of hyperbolic functions
exist:

sn(C, :) ⇡ tanh C + (1/4) (1 � :
2
) (sinh C cosh C � C)sech2

C, (1.21a)

cn(C, :) ⇡ sechC � (1/4) (1 � :
2
) (sinh C cosh C � C) tanh C sech C, (1.21b)

dn(C, :) ⇡ sechC + (1/4) (1 � :
2
) (sinh C cosh C + C) tanh C sech C. (1.21c)

1.5.4 Shifting the Elliptic Modulus

What happens when : exceeds 1? This will turn out to be a particularly relevant
question for our investigations. The simplest manner of establishing a result is to flip
: to 1/: in Eq. (1.16) and work out the consequences. Another way is to define :I in
a defining integral of the form (1.13) as a new variable I0. The answer to the question
posed in terms of the so-called reciprocal parameter or Jacobi’s transformation is
that, when the modulus of the elliptic cn function exceeds 1, the function can be
written as a dn function with a modulus which is the reciprocal of the original
modulus, with a constant multiplying the argument of the function. The constant
is the original modulus (of the cn function). Precisely the same happens when the
modulus of a dn function exceeds 1. In the case of the sn, the function remains an
sn while the modulus undergoes a change to its reciprocal, but not only does the
argument change in the same way as for the other two functions but a scaling to
reduce the amplitude also occurs. Thus, if : > 1,

cn(C, :) = dn(:C, 1/:), (1.22a)

dn(C, :) = cn(:C, 1/:), (1.22b)

sn(C, :) = (1/:)sn(:C, 1/:), (1.22c)

provide explicit expressions while returning : to the standard range.
The above is often referred to as Jacobi’s reciprocal parameter transformation: it

brings back into the 0, 1 range any : that strays beyond 1. We will also have occasion
to use a transformation that allows a shift from one :-value to a specific di�erent
(either larger or smaller) value accompanied by a more complicated combination
of elliptic functions (Abramowitz and Stegun, 1965). One of them changes : to a
higher value (within the 0, 1 range) and the other to a lower value and they are called,
respectively, ascending and descending Landen transformations. An example is
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dn(C, :) =
dn2

⇣
C

(1+^) , ^

⌘
� (1 � ^)

(1 + ^) � dn2
⇣

C

(1+^) , ^

⌘ , (1.23)

where ^ = 1�
p

1�:2

1+
p

1�:2
. More details will be found in the literature.

1.5.5 Jacobi’s Imaginary Transformation

By using the definitions of the elliptic functions, it is similarly straightforward to
transform the functions when the argument becomes imaginary (Byrd and Friedman,
1971):

cn(8C, :) =
1

cn
⇣
C,

p
1 � :2

⌘ = nc
⇣
C,

p
1 � :2

⌘
, (1.24a)

dn(8C, :) =
dn

⇣
C,

p
1 � :2

⌘

cn
⇣
C,

p
1 � :2

⌘ =
nc

⇣
C,

p
1 � :2

⌘

nd
⇣
C,

p
1 � :2

⌘ , (1.24b)

sn(8C, :) = 8
sn

⇣
C,

p
1 � :2

⌘

cn
⇣
C,

p
1 � :2

⌘ = 8
nc

⇣
C,

p
1 � :2

⌘

ns
⇣
C,

p
1 � :2

⌘ . (1.24c)

where the functions nc, nd and ns are respectively defined as the reciprocals of cn,
dn and sn, respectively. We will have occasion to use these during our study of the
e�ect of initial phase on the evolution of the particle.

1.5.6 Weierestrass and Other Elliptic Functions

Useful generally in physics applications are also theta and zeta elliptic functions that
we will not discuss because we do not apply them in this book. We will find much use
for the Weierstrass function ® in Chapter 4 where we employ it to study the nonlinear
nondegenerate dimer, and systems more complex than a dimer. There are several
connections between the two kinds of elliptic functions (see, e.g., Abramowitz and
Stegun (1965)) but we will have the occasion, in Chapter 4, to use one that connects
® to the reciprocal of the square of the sn-function. Details are explained in Eq.
(5.12) and the ensuing discussion.
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1.6 Application of Elliptic Functions to a Familiar System

Examples of elliptic functions put to use in physics are in rigid body motion such as
spinning tops, the physical pendulum subject to gravity, the theory of relativity, and
even population dynamics of bacteria in a Petri dish. In order to gain familiarity with
elliptic functions, let us briefly examine them in a simple physical system, a standard
textbook case of a planar pendulum that is not restricted to small oscillations, and
let us solve it in two di�erent ways to gain expertise in elliptic connections. We will
also make passing allusion to the analysis of bacteria in a Petri dish.

A physical pendulum of mass < inclined at an angle \ to the vertical at time C
obviously obeys Newton’s equation of motion

<✓

3
2
\ (C)

3C
2

= �<6 sin \ (C). (1.25)

Here 6 is the acceleration due to gravity and ✓ is the length of the pendulum. By
defining

⌦ =
p
6/✓

we can rescale time to the dimensionless form g = ⌦C, and simplify Eq. (1.25) to

3
2
\

3g
2
+ sin \ = 0. (1.26)

Let us now solve Eq. (1.26) in two di�erent ways to familiarize ourselves with
the use as well as behavior of elliptic functions.

1.6.1 The Displacement of the Physical Pendulum

First, let us simply use the standard ‘energy method’ familiar to us from elementary
classical mechanics (that was mentioned in Eq. (1.10) to derive a potential) whereby
we multiply the equation by 3\/3g to get a first-order derivative equation,

3

3g

"
1
2

✓
3\

3g

◆2

� cos \

#
= 0, (1.27)

and, consequently,

1
2

✓
3\

3g

◆2

� cos \ =
1
2

✓
3\

3g

◆2

0
� cos \0. (1.28)

Here the angular displacement \0 and the angular velocity (3\/3g)0 correspond to
any point 0 on the trajectory. Taking that point as the one at which the displacement
is maximum, \<, and the velocity is zero, i.e., the point at which the pendulum
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reverses the direction of its oscillation, we find

3\

3g

=
p

2 (cos \ � cos \<). (1.29)

This can be rewritten as

g

:1
=

π
\/2

0

3\
0q

1 � :2
1 sin2

\
0

, (1.30)

under the convention that \ = 0 at g = 0, and :1 is the cosecant of half the maximum
angle. Identification with the definition (1.16) then gives us the solution

sin
✓
\

2

◆
= sn

✓
C

:1

r
6

✓

, :1

◆
, :1 = 1/sin(\</2). (1.31)

Because :1 that we have chosen as the elliptic modulus can exceed 1 (being the
reciprocal of a sine), we might use the reciprocal transformation, choose : = 1/:1

as the new modulus and write, using (1.22c),

sin
✓
\

2

◆
= : sn

✓
C

r
6

✓

, :

◆
, : = sin(\</2). (1.32)

For small angles (short times or small amplitude of oscillations), sin(\/2) ⇡ \/2
as well as sn(C

p
6/✓, :1) ⇡ sin(C

p
6/✓), not to mention that : ⇡ \</2, which gives

us back the simple harmonic approximation as a small-oscillation limit

\ ⇡ \< sin(C
p
6/✓),

appropriate to the stated initial condition. The solution retains, nevertheless, the
complexities of the large-oscillation features in the opposite limit.

Although all this development is straightforward, we must remain alert to sub-
tleties. We know that Eq. (1.31) expresses a trigonometric sine as equal to an elliptic
sine; both are known to be limited to ±1 and so there is no problem. But Eq. (1.32)
equates a trigonometric sine as the product of : and an elliptic sine. Could this
create a problem if the : and consequently its product with the elliptic sine were
to exceed 1? You might argue that : itself is restricted to being not greater than 1
because it equals a sine (: = B8=(\</2)). However, this presupposes the existence
of a maximum angular displacement \< from which the mass retraces its motion.
What if there is no such maximum and the motion of the pendulum is such that \
always increases as would happen for su�cient energy when the pendulum never
reverses direction and the motion consists of rotations rather than librations?

The alert reader will realize that Eq. (1.31) is built for this eventuality, the elliptic
modulus :1 being generally larger than 1 in its context. Indeed, although Eqs. (1.31)
and (1.32) are formally equivalent to each other through the prescription : = 1/:1,
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they are respectively appropriate to the description of rotatory and librational motion
of the pendulum, the demarcation situation being : = 1 or \< = c.

Perhaps these matters become clearer if we regard Eq. (1.26) to describe, rather
than a pendulum under the action of gravity, an atom moving in a 1-dimensional
sinusoidal potential as it might in a material. The variable \ is then a true distance
rather than an angle. Depending on its initial energy, the atom might either remain
oscillating in its starting well (elliptic modulus confined to the 0 to 1 range) remaining
thereby restricted to vibrations around the starting position, or escape that starting
well (elliptic modulus with magnitude larger than 1) and keep moving away from
the starting position, never reversing its direction.

1.6.2 The Angular Velocity of the Pendulum

It is instructive to inspect the velocity l(g) = 3\ (g)/3g (angular if it is a pendulum
we study but standard linear if it is the atom in the sinusoidal well we investigate) by
di�erentiating Eqs. (1.31) and (1.32). Such an operation results in both cases in the
velocity emerging as a dn function,

l(g) =
3\

3g

=
2
:1

dn
✓
g

:1
, :1

◆
= 2: dn(g, :), (1.33)

which, as we know, can be expressed equivalently as a cn function with inverted
modulus. It should be clear to the reader that, although these expressions are equiv-
alent, the dn (cn) functions with modulus restricted to the 0 to 1 range are more
appropriate to rotational (librational) motion of the pendulum or the translational,
well-to-well (oscillatory, intra-well) motion of the atom.

Let us attempt something unusual at this point: return to Eq. (1.26) and rather
than attempt to integrate it, di�erentiate it one more time with respect to g:

3
3
\

3g
3
+ cos \

3\

3g

= 0. (1.34)

The reason to step further into di�erentiation of Eq. (1.26) is not to make life more
di�cult by increasing the order of the equation to solve but to notice that it is identical
to a second order di�erential equation for the angular velocity l(g) = 3\/3g. For
cos \ appearing in Eq. (1.34), we substitute the expression obtained from Eq. (1.28).
The result is an evolution with a cubic nonlinearity in l:

3
2
l

3g
2
= ⇢l �

l
3

2
, (1.35)

The constant ⇢ is equal to the right hand side of Eq. (1.28) and can be evaluated from
the initial conditions. Comparison of Eq. (1.35) with a result we have already seen,
that the cn function obeys Eq. (1.15b), allows us, after a straightforward scaling, to
express the angular velocity of the pendulum as being proportional to the cn:
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l(C) = l(0)cn(g, :). (1.36)

The reader is strongly encouraged to undertake the exercise of completing the process
of filling in the intermediate steps in going from Eq. (1.35) to Eq. (1.36).

What we have achieved through this unusual procedure of di�erentiating the
second order equation for \ is to convert its trigonometric nonlinearity to a cubic
one in an equivalent equation for l(g) so that we could find the solution directly
in terms of the elliptic functions. The solution, thus obtained, describes the velocity
rather than the displacement of the pendulum. Furthermore, the reader is invited to
notice the isomorphism of the l-equation in the pendulum case to the ?-equation
for the quantum nonlinear dimer.5

1.7 Application to Bacterial Populations in a Petri dish

Finally, let us examine a relatively rare application of elliptic functions, this time to
an ecological problem concerning the evolution of a bacterial population.

The population of bacteria in a Petri dish increases in the well-known Malthusian
manner but is limited by competition for nutrition. Denoting the bacterial density at
a location G in a 1-dimensional representation at time C by D(G, C), the evolution is
often modeled (Lin et al., 2004; Kenkre and Kuperman, 2003) as obeying (see also
the recent review in Kenkre and Giuggioli (2020)),

mD(G, C)

mC

= �D(G, C) � ⌫D2
(G, C) + ⇡

m
2
D(G, C)

mG
2

, (1.37)

where � and ⌫ are constants and ⇡ is the di�usion constant that controls the random
walk that the bacteria perform. The three terms on the right hand side of Eq. (1.37)
respectively describe increase in the population controlled by nutrition, depletion
from competition and random walk motion. A simple experiment designed to test
the equation or to measure its parameters consists of placing a mask in the Petri
dish while simultaneously shining lethal radiation that destroys the bacteria outside
the mask. Such an experimental setup was analyzed (Kenkre and Kuperman, 2003)
and the theoretical predictions verified (Perry, 2005). Extensions relevant to the use
of multiple masks may be found in (Kenkre and Kumar, 2008; Kumar and Kenkre,
2011). What is involved is the solution of the steady state version of the Fisher
equation which is the ordinary di�erential equation

3
2
D(b)

3b
2

+ �D(b) � ⌫D
2
(b) = 0 (1.38)

in the scaled variable b = G/
p
⇡.

5 With the restriction that ? has to lie in the interval ±1.
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The setup is that the mask proceeds from b = �F to b = +F and thus has width
2F. The parameters are constant except that � outside the mask is supposed to be
negative and infinite in magnitude with the result that at the mask edges and outside,
the density vanishes. One way to solve (1.38) is to notice that it is very similar, but
not identical, to the equation obeyed by H = sn2

(b, :):

3
2
H

3b
2
+ 4(1 + :

2
)H � 6:2

H
2 = 2 (1.39)

the di�erence being, for instance, an extra constant in the evolution. To bring the
two equations into alignment with each other, one considers a phase and amplitude
change and consider as a solution,

D(b) = Usn2
(Vb + X, :) + W. (1.40)

A bit of somewhat tedious algebra leads to explicit expressions relating U, V and W
to the elliptic modulus : and to the constants � and ⌫ then produces a convenient
solution in terms of cd2

(b, :) where cd(b, :) is the ratio of the cn function to the dn
function,

cd2
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1 � :
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+ :
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1 � :2 + :4

��1/2
. (1.41)

This solution6 is then used to deduce a fitting function that is compared to the spatial
dependence of the observed density of the bacteria. The elliptic modulus : , the
di�usion constant ⇡, and the growth rate � (⌫ drops out of the evaluation under the
conditions of experiment) are obtained from fitting the expression to the observed
spatial variation of the population. The mask width is found then to be related to the
system parameters through

F = 2

r
⇡

�

⇣
1 � :

2
+ :

4
⌘1/4

cd�1

 s
1

1 + :2 +
�
1 � :2 + :4

��1/2

!
. (1.42)

A confirmation of the theory is recovered by observing that an abrupt transition
occurs as one lowers the width of the mask and reaches, when : = 0, at a critical
value F2 of the width satisfying the simple relation

2F2 = c
p
⇡/�.

6 Some typographical errors were left inadvertently in earlier publications, specifically in Kenkre
and Kuperman (2003) and Kenkre and Giuggioli (2020). It is always di�cult to provide errata to
already published material. I take this opportunity to correct the typos here. It could help the rare
reader who might have come across those typos and, maintaining some sort of reading continuity,
might have arrived at this book. Equations (1.41) and (1.42) given above should respectively
replace Eqs. (5.33) and (5.35) in Kenkre and Giuggioli (2020) and Eqs. (10) and (12) in Kenkre
and Kuperman (2003). I am indebted to Marcelo Kuperman for assistance in setting this right.
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Based on their calculations from bacterial data on E. coli, Kenkre and Kuperman
(2003) calculated the crucial mask width to be of the order of 0.5 2<, a prediction
that was verified satisfactorily a few years later (Perry, 2005) as stated above.

Our purpose in this description has been to show the reader another example of
an application of elliptic functions particularly when the equations obeyed are not
precisely the same as the ones that we need to analyze.

1.8 Chapter 1 in Summary

The discrete nonlinear Schrödinger equation appears naturally in the polaron prob-
lem where strong interaction of a quantum particle such as an electron moving
among the sites of a crystal with phonons could lead to a suppression of the site
energy of the particle. Self-trapping is expected but di�cult or impossible to study
analytically from the equation on an extended system. A simple numerical investi-
gation was shown to lead to what looks like such self-trapping. In order to have a
precise analysis, attention was then restricted to a system of small spatial extent, a
dimer. Density matrix equations were derived and a closed nonlinear equation for
the probability di�erence in the dimer obtained. Arguments based on a study of the
potential associated with the equation, in the manner of a well-known procedure in
classical mechanics, were shown to lead to a transition. In order to prepare for an
explicit solution of the probability di�erence in terms of analytical functions, back-
ground was provided on Jacobian elliptic functions and it was shown how they may
be applied to two physical problems, a pendulum not restricted to small amplitudes
of oscillation, and bacterial populations in a Petri dish. These considerations were
presented as a prelude to the solution to be presented in the succeeding Chapter.



Chapter 2
Dimer Solutions, Mobility Reduction, and
Neutron Scattering

The simple numerical study of the discrete nonlinear Schrödinger equation (DNLSE)
for a particle moving on the sites of a linear chain suggests as we saw in Chapter 1
(see Fig. 1.1) that a self-trapping transition is probably in the air and that it occurs at
a finite value of the ratio j/+ of the nonlinearity parameter to the nearest-neighbor
intersite transfer matrix element. On restricting the study to a small system of two
sites 1 and 2, the transition seems graphically to occur (see Fig. 1.2) when the above
mentioned ratio takes the value 4 if the particle is initially completely localized on
one of the two sites. The last sections of Chapter 1 armed us with elliptic functions,
thereby providing us with a tool to obtain an analytic solution for the probability
di�erence ?(C). We will now see how the solution arises in the dimer and exhibits
curious behavior with physical significance and describes the self-trapping transition
in the DNLSE in a very natural manner (Kenkre and Campbell, 1986).

Throughout this present Chapter we will assume that the quantum particle is ini-
tially localized on one of the two sites, leaving partially distributed initial conditions
for the next Chapter. Here we will address interesting consequences of the solution
in reduction of mobility and e�ects on neutron scattering.

2.1 Self-trapping as the cn-dn Transition

Standard recasting of the integral representation of the solution of Eq. (1.9) that
describes the time evolution of the probability di�erence for initial localization is
quite straightforward. It is, however, even quicker to identify Eq. (1.9) with the
second-order equation obeyed by the elliptic function cn, Eq. (1.15). This is done as
follows.

Divide (1.9) by 4+2, define g = 2+C and rewrite the derivatives with respect to
this dimensionless time. The identification of the two quantities relevant to Eq. (1.9),

�

4+2
=
j

2

8+2
� 1,

⌫

4+2
=
j

2

8+2
,

21
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Fig. 2.1 The time evolution of the probability of the initially occupied site in the degenerate
nonlinear dimer showing the self-trapping transition. The di�erent curves correspond to di�erent
values of the nonlinearity ratio j/4+ . For values near 0, the probability is sinusoidal (not shown
in the Figure) but changes shape as the ratio increases from (A) 0.95 to (B) 0.9995, with a clear
increase in the period of the oscillation. Curve (C) has the nonlinearity ratio equal 1 and marks the
self-trapping transition: the probability is proportional to the hyperbolic secant and the period of
oscillation is infinite. As j/4+ increases further, with values (D) 1.0001 and (E) 1.75 as shown,
the probability oscillates only in the upper half, its average value increasing further from 0.5 and
towards 1, signifying less and less mobility of the quasiparticle.

with 2:2
� 1 and 2:2 of Eq. (1.15) respectively, leads directly to the conclusion that,

for initial placement (C = 0) on site 1, the probability di�erence ?(C) = %1 (C)�%2 (C)

of the site occupation probabilities is given by the elliptic cosine with argument 2+C
and elliptic modulus j/4+ ,

?(C) = cn
⇣
2+C,

j

4+

⌘
for j  4+ . (2.1)

Equation (2.1) predicts (Kenkre and Campbell, 1986) that in the absence of the
nonlinearity, the particle oscillates back and forth between the sites sinusoidally, ?(C)
being simply a cosine of the argument 2+C in this case of vanishing nonlinearity.
However, the shape of the time evolution changes as the nonlinearity increases and
the oscillation period increases. The change of shape is pronounced as the elliptic
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modulus j/4+ nears 1, following the sequence of cases shown in Fig. 1.5. At the
point that j equals 4+ , the critical value, ?(C) assumes the shape of the hyperbolic
secant, the period becoming infinite.

What happens as the nonlinearity exceeds 4+? For this, we appeal to the trans-
formation (1.22b) which tells us that the cn function becomes a dn function, i.e.,

?(C) = dn
✓
jC

2
,

4+
j

◆
for j � 4+ . (2.2)

Notice that the transformation has brought the elliptic modulus back into the 0 to 1
range as the nonlinearity parameter j has stepped beyond 4+ . Equation (2.2) predicts
that, if the nonlinearity is larger than its critical value, ?(C) oscillates, taking only
positive values. This signifies that the particle tends to stay near the initial site of
occupation: we are now in a situation of hampered mobility. Within the limitations
of a representation of a real extended system by a system (dimer) of such limited
size, we can say that, for the initial condition considered, the particle motion is free
if 4+ exceeds j (given that it attains equally large values on both sites) whereas it is
self-trapped if j exceeds 4+ (given that it clearly occupies the initial site for longer
intervals). As a function of the nonlinearity, the detailed behavior is as follows.

For vanishing nonlinearity, the particle oscillates between the two sites with
period c/+ . As j increases, the oscillations depart from trigonometric behavior.
The period of oscillations ) is always given by the complete elliptic integral of the
first kind  (:) with elliptic modulus : = j/4+ ,

) =
2 (:)

+

=
2
+

π 1

0

3I

p
1 � I2

p
1 � :2

I
2
. (2.3)

As j approaches very close to 4+ , the oscillations show a marked departure from
those of a trigonometric nature. The period becomes huge as the particle oscillates
sluggishly between the sites. The logarithmic approximation is appropriate and we
can express the period as

) ⇡
1
+

ln
✓

16
1 � (j/4+)2

◆
. (2.4)

At the transition, ?(C) = sech(2+C) = sech(jC/2) showing an infinite period and
this clearly refers to moving in the right well in Fig. 1.2 constrained by the dashed-
dotted line and taking an infinite time to cross to the left well, unable to perform a
proper oscillation. Far away from the transition, on the self-trapped side, as j/4+
approaches infinity, the oscillations are well approximated by the trigonometric
expression for the dn-function

?(C) ⇡ 1 � (8+2
/j

2
) sin2

(jC/2). (2.5)



24 2 Localized Initial Conditions

This is precisely the evolution of the probability of a linear dimer with a true energy
mismatch � = j if it is much larger than 2+ (see Eq. (2.9) below). This similarity
prompts the discussion in the next Section.

2.1.1 Kinship to Two Linear Systems

The nonlinear degenerate dimer, i.e., one with equal site energies, that we are treating
in this chapter bears kinship to two di�erent linear counterparts, the linear nonde-
generate dimer and the linear damped dimer. For the former, the site energies di�er
by � = ⇢1 �⇢2. For the latter, interactions with the environment tend to equalize the
occupation of the site probabilities by damping ? at rate U. For instance, note that
the latter system obeys

3
2
?(C)

3C
2

+ U
3?(C)

3C

+ 4+2
?(C) = 0, (2.6)

and has the solution

?(C) = 4�UC/2 cos
⇣
2+C

p
1 � (U/2+)2

⌘
, (2.7)

if we use the condition that ?(0) = 1 and 3?(C)/3C vanishes initially. We have seen
that, in the nonlinear dimer, there is a critical value of the nonlinearity j, viz. 4+ ,
at which the behavior changes abruptly. In the linear damped dimer, there is also a
critical value of its parameter, the damping rate U, (viz. 2+), at which the behavior
of the evolution changes abruptly from being underdamped to turning overdamped.
The demarcation is known widely in elementary contexts as ‘critical damping’.
Oscillations of ?(C) disappear at this point and, for higher values of the damping
rate, the time evolution changes from sinusoidal variation to exponential decay.

Particularly important is that the period of oscillation increases from the value
c/+ it had for zero damping and becomes infinite at the transition. Beyond the
transition, the behavior of the time evolution is di�erent in the case of the linear
damped dimer as compared to the case of the nonlinear dimer in that the former
shows a decay while the latter does not. Nevertheless, as we will see below in our
examination of neutron scattering, the phenomenon of motional narrowing that is
typical of the linear damped dimer also occurs for the nonlinear (undamped) dimer.

Let us now compare the nonlinear dimer evolution to the other simple system, the
linear nondegenerate dimer. The time evolution equation it obeys is

3
2
?(C)

3C
2

+ (4+2
+ �2

)?(C) = �2
, (2.8)

and has the solution

?(C) = 1 �


2

1 + (�/2+)2

�
sin2

h
+C

p
1 + (�/2+)2

i
, (2.9)
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Fig. 2.2 The self-trapping transition illustrated by plots against the nonlinearity ratio j/4+ of two
properties of the probability di�erence: its average over a cycle of its time dependence (solid line,
left axis) and of its frequency of oscillation (dashed line, right axis). The average ? remains zero
for all values of the nonlinearity less than the critical value 1 as the quantum particle oscillates
equally on both sites. It then undergoes the self-trapping transition as the nonlinearity increases
further. With further increase in j, the average ? (solid line) tends to 1, indicating total self
trapping. The oscillation frequency (dashed line) starts at a value proportional to the bandwidth,
drops logarithmically at the transition and, for nonlinearities beyond the critical value, increases
without bound. See Eq. (2.3). Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

for the same initial condition considered above. See, e.g., (Tiwari and Kenkre, 2014).
While this solution exhibits no transition at a specific value of � relative to + , it
does display the property of non-resonance: the average value around which ?(C)

oscillates increases with an increase in � similarly to the way it does in the nonlinear
dimer with an increase in j beyond the transition. If � >> 2+ , it agrees with Eq.
(2.5) as commented, with the correspondence �! j.

Qualitatively speaking, for nonlinearities less than the critical value 4+ , the non-
linear degenerate dimer is similar to the damped linear dimer in that the period
increases and becomes infinitely long at the critical point, and as we shall see in the
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sequel, exhibits motional narrowing.1 Beyond the transition, the similarity is to the
nondegenerate (undamped) dimer in the behavior of the average value of ?.

The takeaway from these brief comments is that, for the analysis of the nonlinear
dimer, it is instructive to focus on two quantities having to do with the probability
di�erence: h?i, its average over a cycle, and its period of oscillation, equivalently
its reciprocal, the frequency. A plot of these two quantities is provided in Fig. 2.2.
The nonlinearity ratio j/4+ is plotted on the x-axis. On the y-axis, h?i is shown
on the left and the frequency, equivalently the reciprocal of the period, is plotted on
the right. The first quantity remains zero for all points on the left of the transition
and then rises on its right whereas the second decreases to zero precipitously at the
transition and then rises beyond the transition.

We will have occasion to use these two quantities, h?i and the frequency of
oscillations, for a detailed analysis of the nonlinear nonresonant dimer in Chapters
4 and 5.

2.1.2 Reduction of Mobility from the DNLSE

How would the transition behavior we have discovered in the simple system of the
degenerate nonlinear dimer reflect itself in an observed experiment? The simplest
consequence to imagine would be in the sudden reduction of the mobility of a
quantum particle moving in a system as the nonlinearity parameter is increased from
below the transition value to one higher than the critical amount. As the theory
of linear response (Kubo, 1957) explains, the mobility of a particle moving on the
sites of a crystal can be looked upon as an infinite time integral of the velocity
autocorrelation function which involves in it the square of the matrix element for
intersite transfer. An examination of the detail of various formalisms constructed
for the calculation of transport coe�cients (Chester and Thellung, 1959; Kenkre
and Dresden, 1971) should not be necessary here. We need focus only on the
square of the matrix element of the velocity (or the site-to-site transfer interaction)
that is proportional to the mobility in any such way of calculating the mobility
or conductivity. We see by equating the frequency of oscillation of the probability
di�erence in the presence of the nonlinearity to a quantity proportional to the e�ective
matrix element (bandwidth) +4 5 5 , that the latter can be regarded as + divided by
a complete elliptic integral of the first kind that blows up at the transition, causing
+4 5 5 to vanish. Thus, Fig. 2.3 shows the bandwidth, consequently the mobility,
undergoing a sharp logarithmic reduction at the transition. It should be noted that
the e�ective transfer matrix element is also the first part of the dashed curve in Fig.
2.2.

A similar simple way of understanding the mobility reduction is to calculate
directly the transfer rate of the quantum particle to move from site to site. In a
linear chain of sites separated by the distance (lattice constant) 0, the evolution being

1 The dimer subjected simultaneously to damping and nonlinearity has been analyzed in (Tsironis
et al., 1988) but has less relevance to the present discussion.
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Fig. 2.3 Mobility Reduction as a result of self-trapping from the DNLSE. Being proportional to
the time integral of a velocity autocorrelation function, the mobility is proportional to the square
of the e�ective intersite matrix element +4 5 5 . The ratio of the latter to + is plotted here as being
proportional to [ (2/c) (j/4+ ) ]

�1
⇡

⇥
c/ln

�
16/1 � (j/4+ )

2� ⇤ , the logarithmic approximation
being pretty accurate near the transition. The abscissa is the nonlinearity ratio j/4+ . Reprinted
with permission from fig. 2 of Ref. (Kenkre and Campbell, 1986); copyright (1986) by American
Physical Society.

governed by the DNLSE (1.2), it is possible to derive a generalized master equation
of the form

3%< (C)

3C

=
π

C

0
3B

’
=

[W<= (C, B)%= (B) �W=< (C, B)%< (B)] , (2.10)

via a weak-coupling approximation (Wu and Kenkre, 1989). Here the %< (C) are the
probabilities of occupation of sites < and the memories W<= (C, B) are found to be
approximately given by nonlinear expressions

W<= (C, B) = 2+2
(X<,=+1 + X<,=�1) cos

✓
j

π
C

B

3I [%< (I) � %= (I)]

◆
. (2.11)

Some of the details of the procedure will be indicated in Chapter 11. The definition
of the intersite transfer rate as the reciprocal of the time taken for the mean square
displacement to rise from the value 0 to 02 as the particle moves from a site to
its nearest-neighbor may then be used with the approximate equation (2.11) in the
generalized master equation as well as with the exact DNLSE (1.2). One is then led
to Fig. 2.4 in which one sees in (A) that the exact and the approximate equation of
evolution both predict, very similarly, the abrupt decrease in the rate (therefore the
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mobility) in the region of self-trapping as the nonlinearity ratio j/4+ crosses the
neighborhood of the critical value (Wu and Kenkre, 1989).

Manifestations of nonlinearity e�ects on mobility reduction as predicted by the
DNLSE can be seen in a variety of other contexts including in the application
carried out by Wu and Kenkre to muon spin relaxation as shown in (B) of Fig. 2.4.
They followed ideas developed by Kehr and Kitahara (1987, 1988) who studied spin
depolarization of quantum particles moving in lattices using the stochastic Liouville
equation which combines quantum features with random scattering, and focusing
attention on two-state features of the system. In a system such as a ferromagnetic
crystal with magnetically inequivalent sites, e.g. BCC iron, a spin-polarized muon
undergoes spin relaxation as a combined result of its motion and of the di�erent
Larmor frequencies at the di�erent sites. An idealization of this system is a linear
chain with alternating Larmor frequencies l and �l. In such a simplified system,
the muon may be looked upon as a quantum particle whose state evolves under
the combined action of transport via nearest-neighbor matrix elements + from site
to site, spin rotation with the Larmor frequencies, and strong interactions with the
vibrations of the lattice. Wu and Kenkre calculated the oscillations and decay of
the x-component of the muon spin, specifically of (G (C) =

Õ
<
(1/2) [d+�

<<
(C) +

d
�+
<<

(C). Behavior such as emerges from the analysis of Kehr and collaborators was
seen. However, because we employed the DNLSE, we could also predict an abrupt

Fig. 2.4 The self-trapping transition reflected in consequences of the DNLSE for muon spin
relaxation. The transfer rate defined as the reciprocal of the time taken for the particle to move the
distance of a lattice site is displayed in (A) as calculated from Eq. (2.11), exactly as well as via
a weak-coupling transition, and the steady state (infinite-time) G� component of the muon spin is
displayed in (B). Both are plotted against the nonlinearity and both show an abrupt decrease arising
from mobility reduction at the transition.
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transition. It is graphically depicted in (B) in fig. 2.4 and the reader is referred to a
complete description in (Kenkre, 1989, 1994a).

2.2 Neutron Scattering Lineshapes

The clearest and perhaps the most interesting consequences of self-trapping are,
however, seen in the traditionally used probe of neutron scattering. Let us investigate
it extensively in the following.

2.2.1 Introduction to the Experiment and Basic Formalism

The motion of a particle in a lattice, such as a hydrogen atom or a muon in a metal,
is often studied experimentally by scattering a beam of probe particles that interact
weakly with the particle, a neutron being an excellent candidate for the probe particle.
See, e.g., Sköld (1978). The general theory is due to Van Hove (1954). The key
quantity that needs to be calculated to address experiment is the so-called scattering
function which is the Fourier transform ((: ,l) = (1/2c)

Ø
1

�1
3C 4

�8lC
� (: , C) of the

correlation function
� (: , C) = )A d4�8:G4�8:G (C) . (2.12)

Here, d is the equilibrium density matrix of the moving particles taken to be nonin-
teracting, : is the momentum transfer, and G is the position operator.

If the target system is initially in thermal equilibrium, as we will assume to be
the case, the appropriate form of d is canonical. In narrow-band materials, wherein
:⌫ times the temperature is large enough (with respect to the particle bandwidth)
that the infinite temperature approximation is applicable to a reasonable extent,
the correlation function � (: , C) becomes simply the spatial Fourier transform of a
conditional probability, i.e.,

Õ
<
4
8:0<

%(<, C), where 0 is the lattice constant in a
1-dimensional representation. Details of how to calculate the neutron line shape
from various equations of motion underlying the particle motion have been given by
(Brown and Kenkre, 1983, 1987; Kenkre and Brown, 1985) and reviewed in Chapter
4 of Kenkre (2021).

2.2.2 Calculation of the Lineshape

The application of the formalism to the calculation of the neutron scattering function
for a particle moving between the two sites of a nonlinear dimer becomes simplified
because of the assumption of the temperature being high enough as explained above
and by the fact that the only two values of :0 need be considered, 0 and c. This at
once makes the correlation function � (: , C) equal to the probability di�erence ?(C),
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and we call the relevant line shape simply ((l). Fourier transforms of the elliptic
function cn are not di�cult to calculate (Abramowitz and Stegun, 1965) and lead to

((l) =[c/2: (:)]

1’
==0

sech(l'<) [X(l � l=) + X(l + l=)], (2.13a)

((l) =(1/4+)sech(lc/4+) = (1/j)sech(lc/j), (2.13b)

((l) =[c/2: (1/:)]

 
X(l) +

1’
==1

sech(l'> [X(l � l̃=) + X(l + l̃=)]

!
.

(2.13c)

The three cases (a) j < 4+ , (b) j = 4+ and (c) j > 4+ are indicated individually
here for obvious reasons of clarity. The handling is best done in terms of the nome
@ = exp [�c (:

0
)/ (:)] where  is the complete elliptic integral of the first kind

and : 0 =
p

1 � :2. Here, '< (:) =  (
p

1 � :2)/2+ and '> (:) = (1/:)'< (1/:).
The peak locations are at l= = 2(2= + 1)+4 5 5 = 2+ (2= + 1) [(2/c) (j/4+)]�1

and l̃= = (=cj)/2 (4+/j). These explicit expressions were provided along with
a graphical display by Kenkre and Tsironis (1987) . Let us reproduce them here and
examine what they convey about the nonlinear dimer.

2.2.3 Transition Behavior and Motional Narrowing

The nuances of the behavior of ?(C) are naturally reflected in the scattering function.
In the free region (j < 4+), symmetrically placed lines appear on the l-axis but
there is no peak at l = 0. In the self-trapped region (j > 4+), an additional peak
emerges at l = 0, to signify the fact that the average of ?(C) does not vanish for this
case, in keeping with the energy mismatch that is a consequence in this region of the
nonlinearity in the evolution.

In the absence of the nonlinearity, the elliptic modulus : starts out at zero in Eqs.
(2.13). In this limit,  (:) tends to c/2 while  (:

0
) tends to infinity. The identity

lim
:!0

4
�c (:

0
)

2: (:)
=

1
4

results in the spectrum of ((l) consisting of the two X-function lines at ±2+ appro-
priate to a dimer with no nonlinearity. See (a) of Fig. 2.5.

As the nonlinearity j becomes nonzero, an infinite number of X-lines spring
up throughout the frequency region, specifically at l= = ±(= +

1
2 ) (�l). For this

below-threshold case (j < 4+), the frequency interval is given by

�l = 4+4 5 5 = 4+ [(2/c) (j/4+)]�1
. (2.14)
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Fig. 2.5 Neutron scattering lineshape ( (l) for values of the nonlinearity j below the critical
value 4+ . To be appreciated is the march of the lines as one progresses from (a), the case of the
linear dimer with j = 0 through (d), and the narrowing of the interval between them as nonlinearity
is increased until the critical value is reached. The product of ( (l) and 2+ is plotted along the
y-axis, and the frequency l in units of 2+ along the x-axis. See text for details. Reprinted with
permission from fig. 1 of Ref. (Kenkre and Tsironis, 1987); copyright (1987) by American Physical
Society.

Increasing nonlinearity causes the intensity of the two original lines to decrease
whereas that of the new lines increases. All lines march towards the origin. The
frequency interval between neighboring lines decreases. All this is clear in (b), (c)
and (d) of Fig. 2.5.

At the transition, i.e., for j = 4+ , shown in Fig. 2.6(a), the frequency interval �l
vanishes and the X-functions collapse into a continuous nonsingular curve. The ?(C)
at the transition being a hyperbolic secant, the ((l) is its Fourier transform which is
also2 the hyperbolic secant (in frequency space), see Eq. (2.13b). As the nonlinearity
increases beyond its critical value, the continuous scattering line shapes breaks up
into an infinite number of X-functions again. A line appears at l = 0 which was not
there for the case of j lower than its critical value and it increases in intensity as the
nonlinearity increases further. Clearly, it represents the e�ective energy mismatch
arising from the nonlinearity corresponding to the fact that ?(C) oscillates with a
nonzero average. The other lines march outwards away from the origin and decrease

2 It has always been amusing to me that just like the Gaussian, the hyperbolic secant is its own
Fourier transform! I am not sure I would quite agree, but I have heard it said by reluctant companions
in theoretical physics that such punctuations of the rigors of a physicist’s life make it bearable.
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Fig. 2.6 The second half of the graphical depiction of the neutron scattering lineshape ( (l) as
the nonlinearity j is, respectively at, and above, the critical value 4+ . The critical case j = 4+
corresponds to (a), where the X-functions collapse into a nonsingular hyperbolic secant curve.
Above the critical value, the phenomenon of motional narrowing is observed. The interval between
successive lines now increases as j/4+ increases and the central line becomes more and more
intense. See text. Reprinted with permission from fig. 2 of Ref. (Kenkre and Tsironis, 1987);
copyright (1987) by American Physical Society.

in intensity as the nonlinearity increases. This behavior, evident in (b), (c) and (d) of
Fig. 2.6 is surely fascinating. It is nothing that other than motional narrowing well
known for a linear damped system!

While Eq. (2.14) describes the pre-transition frequency interval, the expression
for nonlinearities greater than the critical value (j > 4+) is

�l = j [(2/c) (4+/j)]�1
. (2.15)

To a good approximation, the behavior of the frequency interval is logarithmic near
the transition on both sides of it:

�l ⇡ 4+c/ln
✓

16
1 � (j/4+)2

◆
for j  4+ , (2.16a)

�l ⇡ jc/ln
✓

16
1 � (4+/j)2

◆
for j � 4+ . (2.16b)
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2.3 Comparison of the Motional Narrowing to the Linear
Damped Result

The behavior of the neutron scattering lineshape for the nonlinear dimer is remarkably
similar to that of a linear dimer with damping present. The evolution of ?(C) in
the latter case is governed by Eq. (2.6), with the solutions in the three regimes,
underdamped, critically damped, and over damped, given, respectively by

?(C) = 4�C U/2 [cos(⌦<C) + (U/2⌦<) sin(⌦<C)] forU  4+ , (2.17a)

?(C) = 4�C U/2 [1 + (CU/2)] = 4�2+ C
[1 + 2+C] forU = 4+ , (2.17b)

?(C) = 4�C U/2 [cosh(⌦>C) + (U/2⌦>) sinh(⌦>C)] forU � 4+ . (2.17c)

The frequency⌦< here is
p

4+2 � (U/2)2 and the symbol⌦> stands for
p
(U/2)2 � 4+2.

What scattering lineshapes would result from neutron scattering o� a linear
damped dimer? Fourier-transforming Eqs. (2.17), and employing the notation that
LU (l) is 1/2c times the Lorentzian (U/2) [(U/2)2

+l
2
]
�1, and that H±(l) denote

the combinations LU�2⌦ (l) ± LU+2⌦ (l), we get the result

((l) =
✓
2 +

l

⌦<

◆
LU (l +⌦<) +

✓
2 �

l

⌦<

◆
LU (l �⌦<) forU < 4+ , (2.18a)

((l) =2

1 + cos

✓
2 tan�1 2l

U

◆�
LU (l) forU = 4+ , (2.18b)

((l) =

H+(l) +

U

2⌦>

H� (l)

�
forU > 4+ . (2.18c)

The astute reader will have correctly concluded that the reason to display the scat-
tering lineshape for the linear damped dimer in the more complicated form of Eq.
(2.18) rather than simply as

((l) =
1
c

4+2
U

(4+2 � l2)2 + (Ul)2
(2.19)

is merely to facilitate comparison with Eqs. (2.13). The linear damped dimer line-
shape is displayed in Fig. 2.7. For no damping, the lineshape consists of two X-
function lines (not shown) that undergo true broadening on introducing and increas-
ing the damping rate U, with their peaks moving towards the origin. It is clear that
true broadening, i.e., the appearance of a continuous curve that is not singular, does
not happen in the nonlinear dimer lineshape but the overall e�ect appears the same
particularly if instrumental broadening agents are present as they would be in any
realistic experimental situation. At critical damping marked by U = 4+ , we see only
a single central peak in the linear damped dimer lineshape. This is identical to the
nonlinear dimer system. The peak is then seen to narrow and rise in its value at the
origin here as the damping rate U is increased beyond 4+ . The qualitative behavior
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is thus the same in the nonlinear dimer with no damping and the linear dimer with
damping. The ratio U/4+ in the latter case plays the role of the ratio j/4+ in the
former.3

Fig. 2.7 Neutron scattering lineshape ( (l) for the linear damped dimer from Eqs. (2.18) for
various values of U/4+ : (a) 0.1, (b) 0.5 for underdamped motion, (c) 1 for critical damping, and
(d) 1.5 showing standard motional narrowing. The similarity to Figs. 2.5 and 2.6 is noteworthy.
Modified with permission from fig. 4 of Ref. (Kenkre and Tsironis, 1987); copyright (1987) by
American Physical Society.

Where does the similarity come from? It is clear that the transition situation
j = 4+ in the nonlinear and U = 4+ in the linear damped dimer both correspond
to infinitely sluggish equalization of site probabilities. Fig. 2.8 might help in the
understanding. In the left panel, the position on the l-axis of the main (largest)
peak in the “free/underdamped” region is plotted as a function of 0, the nonlinearity
parameter j/4+ for the nonlinear dimer, and of 1, the damping parameter U/4+ for
the linear dimer. In the right panel, the relative intensity of the central peak is plotted
as a function of the two ratios respectively in 0 and 1. This intensity is clear in the
case of the nonlinear dimer. Although it is more di�cult an appropriate quantity

3 As is well known, expected behavior of a lineshape on superficial examination is broadening
which clearly happens on the underdamped region. The phenomenon of motional narrowing is
somewhat of a surprise to the casual investigator.
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to represent it in the case of the damped linear dimer because of the absence of
X-functions, let us take it to be 2⌦>/U which is the ratio of the value of H� (l) |l=0

to that of H+(l) |l=0. Fig. 2.8 shows that, in this manner, the position of the main
peak as well as the intensity of the central peak in the region where it exists, exhibit
essentially identical behavior for the two systems.

The source of this impressive similarity can be traced to the fact that, if the
nonlinearity parameter j is taken to be the imaginary quantity 8U in the original
DNLSE (1.2) for the amplitudes, U being taken real, the o�-diagonal part of the
density matrix equation becomes identical to the equation representing the linear
damped dimer, equivalently to replacing the DNLSE by the standard stochastic
Liouville equation.

Fig. 2.8 Comparison of the position of the main peak and the intensity of the central peak in the
spectrum for the nonlinear and the linear damped dimers. See text. Modified with permission from
fig. 5 of Ref. (Kenkre and Tsironis, 1987); copyright (1987) by American Physical Society.

Thus, although the nonlinear and linear damped cases correspond to quite di�erent
equations and solutions in appearance, they both arise from essentially the same
source. If j is pure real, what we have seen as the nonlinear dimer evolution results.
If it is taken pure imaginary the linear damped evolution ensues. If it is taken
to be generally complex, an integro-di�erential equation can be derived, the real
(imaginary) part of the complex j being the nonlinear (linear damped) parameter.
The consequent scattering spectrum can be shown to interpolate between that shown
in Figs. 2.7 on the one hand and, on the other, 2.5 and 2.6, respectively.4

It is worthwhile asking whether it is possible to di�erentiate between linear
damped and undamped nonlinear behaviors in the lineshape, particularly given that
there are no real X-functions in the spectrum as a result of instrumental broadening.
Such di�erentiation would be possible, at least in principle, if the following require-

4 Needless to emphasize, whenever one uses a j that is not pure real, the diagonal part of the d
equation must be left untouched in the same spirit as in the construction of the standard stochastic
Liouville equation to ensure that the total particle probability does not decay and the particle does
not disappear.
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ments are met: (i) The instrument broadening width should be small enough, (ii)
the frequency interval �l should be large enough, and (iii) the neighboring peaks
should not be disparate in intensity. The spectrum for the nonlinear dimer would then
consist of a multitude of peaks, visually di�erentiable, whereas that for the linear
damped dimer would have at most two peaks. The first requirement refers to the
quality of instrumentation and the extent to which the lines are free of extraneous
interference. Given a specific instrumental broadening width, the third requirement
places a window on the value of j/4+ (or of U/4+) for which the di�erence in
the two spectra is easily discernible. Much more detailed considerations into this
realistic (nonlinearity) interpretation problem have been given in Kenkre and Tsiro-
nis (1987). Their analysis also shows how to apply methods derived by Kenkre and
Brown (1985) can be applied to the nonlinear dimer to obtain, to a good approxima-
tion, the e�ect of temperature variation on the scattering lineshapes. The reader is
referred to the original paper for details.

2.4 Solution for Arbitrary Initial Conditions

The solutions in Eq. (2.1) or (2.2) on which the development in this Chapter has
been based, take the initial condition to be localized on one of the two sites of a
dimer and thus with @0 and A0 vanishing while ?0 = ±1. In order to study the e�ect
of initial quantum phases on the dynamics, a matter we will take up in Chapter 3, it
is necessary to have the full solution unencumbered by the localization restriction.
Let us obtain the general solution here (Kenkre et al., 1987; Kenkre and Tsironis,
1987) and employ it in the next Chapter.

Returning to the original Eq. (1.8), one finds that relaxing the restrictions on
the initial condition does not change the form of the solutions but only results in
the replacement of the simpler expression for the coe�cient � (leaving even ⌫

unchanged) by one containing full information about @0 and A0 as well as about ?0:

3
2
?

3C
2
= �? � ⌫?3

, (2.20a)

� = (j
2
/2)?2

0 � 4+2
� 2+jA0, ⌫ = j2

/2. (2.20b)

Because the three components of the Bloch vector must obey the condition ?2
0 + @

2
0 +

A
2
0 = 1 for a pure state (which is the only kind we are analyzing here), it is necessary

to specify only two of the three components.
Let us present the fully general solution of Eq. (2.20) through two stages of

generalization. First, let us consider situations in which the initial time derivative of
? vanishes, in other words, @0 = @(0) = 0. The solution then continues to be a cn
that transitions into a dn when the elliptic modulus crosses 1 but : now depends on
the initial phases as well as the probability di�erence. The general solution is then

?(C) = ?0cn[(?0j/2:)C, :] = ?0dn[(?0j/2)C, 1/:], (2.21)
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the elliptic modulus being given by

1/:2 = 2 + (1/?2
0) [(4+/j)

2
+ (8+/j)A0 � 2?2

0], (2.22)

which, with the definition that :0 = j/4+ , can be written in the simple form

:
2 =

:
2
0?

2
0

1 + 2:0A0
. (2.23)

What happens in the completely general case when the initial time derivative of
? is arbitrary? If it does not vanish, we must write

?(C) = ⇠cn[(⇠j/2:) (C � C0), :] = ⇠dn[(⇠j/2) (C � C0), 1/:], (2.24)

and evaluate ⇠ and/or C0 in terms of ?0, A0, and @0 = (3?/3C)0. The result, as given
explicitly in Kenkre and Tsironis (1987) is

C0 = (2:/⇠j)�
⇣
cos�1

(?0/⇠), :

⌘
, (2.25)

where � (i, :) is the incomplete elliptic integral of the first kind given by5

� (i, :) =
π

i

0

3i
0p

1 � :2 sin2
i
0

.

The elliptic modulus : which is obviously a very important quantity governing
the evolution is given by

:
2 =

1
2

"
1 +

?
2
0 � Z

2p
Z

4 + (@0/:0)
2

#
, (2.26)

with
1

2Z2
=

:
2
0

1 + 2:0A0
. (2.27)

Clearly, the fully general expression (2.26) reduces to (2.23) whenever @0 = 0. We
will have occasion to put both these expressions to use in the next Chapter.

2.5 Stationary States and Stability Analysis

As the final subject of this Chapter we investigate stationary states and their stability,
a topic first analyzed for the DNLSE for large as well as small systems by Eilbeck
et al. (1985) in a thorough, impressively detailed, and clear manner. While those

5 You have encountered this quantity already in Eq. (1.16) for an alternate definition of the sn
function whose inverse it is.
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authors started directly from the equations obeyed by the amplitudes in the DNLSE,
we will give here an equivalent study useful for small systems such as the dimer
that was derived by requiring that time derivatives of the probability di�erence for
arbitrary initial conditions (see Eq. (2.24) vanish for all times (Kenkre and Tsironis,
1987; Kenkre et al., 1987). To be able to make appropriate linkages to more general
systems treated in the book further on, let us study the stationary states by demanding
that all three components ?, @ and A of the Bloch vector in Eqs. (1.8) be independent
of time for all time. This is obviously what we mean by stationary states. We will
call the resultant stationary values, respectively ?BB, @BB and ABB .

Fig. 2.9 Stationary state probability di�erences ?BB plotted versus the nonlinearity ration j/2+
showing bifurcation behavior when the latter reaches the value 1. For nonlinearities smaller than
this critical value, the probability di�erence vanishes. For j/2+ > 1, on the other hand, that
symmetrical solution becomes unstable (as shown by the dotted line). The stable solution then has
two branches corresponding to the two signs in Eq. (2.28). The upper branch has state |1i occupied
more, while the lower branch has it occupied less, than the state |2i as quantitatively given in Eq.
(2.29). Copyright Vasudev M Kenkre, 2021. All Rights Reserved.
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The first and the third equations in (1.8) merely confirm that @BB = 0. The second
equation supplies important independent information that stationarity requires that
either ?BB vanish or that ABB = �2+/j. Given the interrelation among the three
Bloch components from probability conservation, and additionally that @BB = 0,
stationarity means that ?BB must either vanish or be given by

?BB = ±

s
1 �

4+2

j
2
. (2.28)

In terms of the stationary values of the quantum mechanical amplitudes 21 and 22,
the result is

|21 | =
1
p

2

vut
1 +

s
1 �

✓
2+
j

◆2

, (2.29a)

|22 | =
1
p

2

vut
1 �

s
1 �

✓
2+
j

◆2

. (2.29b)

These are the self-trapped values, applicable only for j � 2+ . For j  2+ , the
symmetrical solution of vanishing ?BB takes over.

In order to determine the stability of the stationary states, let us follow the standard
procedure of expanding the three Bloch vector components around the stationary
values, linearizing the evolution, and requiring that in the linear approximation the
values tend to return to the stationary ones. The consequence is that for nonlinearities
less than the critical value j = 2+ , the ?BB = 0 solution is stable but for nonlinearities
larger than the critical value that solution becomes unstable.6 The stable solutions
are then the self-trapped values given in Eq. (2.28). Fig. 2.9 displays this graphically,
with solid (dotted) lines representing the stable (metastable) solutions. Stationary
states are of physical importance for at least two reasons. They are often directly
accessible in experiments involving spectra. And in the presence of a damping agent,
the system evolves to them with the passage of time as will be seen in Chapter 7.

2.6 Chapter 2 in Summary

The solution of the discrete nonlinear Schrödinger equation for a quantum mechani-
cal particle shuttling between the two sites of a degenerate (resonant in energy) dimer
was given in terms of Jacobian elliptic functions explained in Chapter 1. The inherent
nature of the relationship of the cn and dn functions as their elliptic modulus crosses
the critical value 1 was shown to be naturally connected to the physical connection

6 Putting time derivatives to zero in the equations for the Bloch vector components finds all the
possible stationary states. Which are stable among them and which not is decided by the stability
analysis which, thus, results in the ?BB = 0 line becoming dotted in the plot beyond j = 2+ .
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between the particle being free or self-trapped. Connections to the simpler systems
of a linear damped dimer and a nonresonant linear dimer to the given system were
examined and explored and suggested the use of two quantities for investigation in
the latter: the average of the probability di�erence over a cycle and the period of
oscillation. Their characteristic behavior as the nonlinearity parameter is varied was
indicated. Applications of the self-trapping were described to several experimental
investigations including mobility or conductivity of particles such as electrons, the
spin relaxation of muons and hydrogen atoms in solids, and neutron scattering. The
latter experiment was explored in considerable detail. The van Hove theory of line-
shapes simplified for the spatially limited system was used for calculations of the
neutron scattering lineshape. The self-trapping transition was investigated in detail
through Fourier transforms of the Jacobian elliptic function solutions we obtained.
Comparison of the spectrum to that of a linear damped dimer was studied and the
reasons for the phenomenon of motional narrowing observed in the nonlinear dimer
as well were investigated. The generalized solution for the probability di�erence was
shown to have the same elliptic function form as for the localized initial condition
(although shifted in time to account for initial time derivatives) and explicit expres-
sions were provided in readiness for application in subsequent Chapters. Finally,
stationary states were analyzed along with a brief indication of stability analysis.



Chapter 3
Initial Delocalization, Phase-Nonlinearity
Interplay, and Fluorescence Depolarization

In Chapter 2, we analyzed the condition of extreme initial localization. This meant
that the particle is initially entirely on one of the two sites of the dimer. Let us devote
this Chapter to the investigation of the e�ects of initial delocalization as also the
consequences initial quantum phases have on the evolution of the dimer. We will
use for the purpose the solution for ?(C) for arbitrary initial conditions obtained at
the end of Chapter 2. In a certain sense, the present Chapter justifies the title of
the entire book because of its immediate engagement with the interplay of quantum
phases and nonlinearity.

We will carry out the study only for pure initial states, which demand, as a result
of the conservation of probability, that the components of the Bloch vector satisfy

?
2
(C) + @

2
(C) + A

2
(C) = ?2

0 + @
2
0 + A

2
0 = 1. (3.1)

This represents the fact that the tip of the Bloch vector must lie on the surface of a
sphere of radius 1. The phases of the system are determined by the inclination of the
Bloch vector.

We do not consider mixed states (i.e., those involving an ensemble) because we
consider the DNLSE as an approximation to whatever original evolution equation
governs the system under study. It is quite possible that forming a proper mixed
state might conflict with the range of validity of the approximation that leads to
the DNLSE. An ensemble average of a property is computed by calculating the
property for each member of the ensemble and then summing the results with
weights appropriate to the ensemble. This is a linear operation. If the actual system
we start our investigations on is, as we have assumed, linear in the full expanded
space required for its description, the standard expectations of linearity will apply
during our construction of mixed states. However, it should be obvious that a subtle
question arises: whether the operation of the approximation that replaces the actual
linear evolution by the contracted nonlinear counterpart (as provided, for instance,
by the DNLSE) is equally valid if performed before or after the ensemble averaging
approximation is carried out. In general, the two will not commute. To be assured of
the correctness of the analysis, let us restrict it, therefore, to pure states.

41
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Of our two questions, how is self-trapping a�ected by a delocalized initial con-
dition, and what does phase-nonlinearity interplay introduce into the evolution, the
first is easier to reason about on physical grounds. We have seen that the lowering
of the site energy through occupation of the site by the quantum particle leads to
resonance being lost between the sites of a system that certainly started out being
resonant as given. The greater this e�ective di�erence at the sites, the greater the
contribution to the self-trapping transition. One might expect, therefore, that larger
initial delocalization will cause lesser loss of e�ective resonance for a given amount
of nonlinearity. The amount of nonlinearity required to cause self-trapping might
then be larger than for a totally localized initial condition case. Let us see if this
really comes about.

Rather than taking a truly arbitrary initial state at once, let us do so in two stages.
Let us take ?0 to be less than 1 in magnitude but begin with the assumption

@0 = d12 (0) � d21 (0) = 0. (3.2)

Observe, for instance, that this condition holds for the stationary state (because
@ is proportional to the time derivative of ?; all time derivatives must vanish in
the stationary state) and notice that this means that knowing ?0, the magnitude of
A0 is specified immediately. Let us investigate the two cases for the two signs of

A0 = ±

q
1 � ?2

0, and only then proceed to the study of the e�ects of non-zero @0. We
thus study the simpler case of real initial conditions first and only later add complex
ones. We will find that expected behavior is seen for the positive sign (in-phase case)
but striking new behavior for the negative sign (out-of-phase case), and that complex
initial conditions add a bit, but not much that is dramatic, to our understanding of
the interplay of initial phases with nonlinearity.

3.1 Real Initial Conditions

The substitution of the assumed values of the initial components of the Bloch vector
in the expression (2.23) for the elliptic modulus of the cn or dn solution (2.21) of the
dimer probability di�erence gives us, for real initial conditions,

:
2 =

:
2
0?

2
0

1 ± :0

q
1 � ?2

0

. (3.3)

A cursory glance at Eq. (3.3) confirms, particularly from the numerator, that a
delocalized initial placement should require a larger amount of nonlinearity j to
cause a transition. To keep in mind is that self-trapping occurs at : = 1 when the
elliptic functions involved change character. The cursory glance also shows that
something dramatic may occur when the nonlinearity reaches a value that makes :0

equal the reciprocal of
q

1 � ?2
0 in the case when the minus sign is operative. The
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expectation is thus that the out-of-phase initial condition may be more interesting.
We will examine all this below.

3.1.1 In-phase Case: r0 = +
q

1 � p2
0, Expected Behavior

For the in-phase case, let us take as an illustrative real initial condition, %1 (0) = 0.8
which, from conservation of probability means %2 (0) = 0.2 and ?0 = 0.6. We

Fig. 3.1 Time evolution of the probability di�erence ? (C) between the two sites of the nonlinear
dimer for a real initial condition that is in-phase. The system begins to oscillate sinusoidally in
the linear extreme limit (:0 = j/4+ = 0). The oscillations become more strenuous, i. e., with
with larger period, as :0 reaches the critical value 5. For still larger nonlinearity, the probability
di�erence oscillates only on one side of zero. The evolution for this delocalized initial condition is
thus identical to that for the localized one except for the critical value of :0 which is a factor of 5
larger here and for the fact that oscillations occur between ±0.6 rather than between ±1. Copyright
Vasudev M Kenkre, 2021. All Rights Reserved.
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additionally assume @0 = 0, A0 = +

q
1 � ?2

0 = 0.8.
As Fig. 3.1 shows, the time evolution of the probability di�erence simply emu-

lates the situation in the case treated in Chapter 2 where the initial condition was
completely localized, with only the maximum of ?(C) changed from 1 in that case
to ?0 = 0.6 here. The expectation that a higher degree of nonlinearity is required to
cause the self-trapping transition is borne out: The value of :0 = j/4+ required, as
shown in the plot, happens to be 5, certainly larger than the value 1 for the localized
case. We have indicated only that critical value and the value 0 (linear dimer) in the
plot. The marching of the evolution towards the transition from the linear situation
and then, beyond the self-trapping transition, the oscillations becoming with greater
frequency with increase of nonlinearity are clear from the graph. In contrast to what
we will see in the out-of-phase case to be treated next, the value of nonlinearity j
required for the ?(C) evolution to reach the constant at the top limit 0.6 is infinite.

For j/4+ < 5, the probability di�erence shows symmetrical oscillations about
zero and is given by

?(C) = 0.6 cn[(1.2)+C, j/4+] .

At the transition, this turns into the familiar hyperbolic secant curve that does not
oscillate. And for j/4+ > 5, it follows

?(C) = 0.6 dn[(0.3)jC, 4+/j],

oscillating only on one side of zero, signifying self-trapping.

3.1.2 Out-of-phase Case: r0 = �
q

1 � p2
0, a New Transition

Similarly to the in-phase case, let us take, for this out-of-phase example, the real
initial condition %1 (0) = 0.8 and therefore %2 (0) = 0.2 and ?0 = 0.6 with the
additional assumption that @0 = 0. However, now we choose the minus sign, in other

words assume the initial quantum phases to be such that A0 = �

q
1 � ?2

0 = �0.8.
We find in the consequent evolution three consequences that are worthy of note. The
first is expected but the other two are surprising. Fig. 3.2 displays two of them, the
expected and and one of the surprising ones.

We see that ?(C) starts out by oscillating sinusoidally between the limits of ±0.6
for zero nonlinearity. The period of the oscillation becomes longer as the nonlinearity
increases, the evolution being described by the cn function, until the self-trapping
transition is reached. This behavior is the same as in the in-phase case but for this
out-of-phase case the self-trapping occurs for a much lower value of the nonlinearity
ratio, 5/9, rather than at 5 as in the in-phase case. The cn turns into the hyperbolic
secant at this point. For higher nonlinearities, the evolution follows the oscillations
of a dn function on only one side of zero. This is the expected feature, being similar
to the localized and the in-phase delocalized counterparts.
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Fig. 3.2 Striking behavior of the probability di�erence ? (C) for the out-of-phase initial condition.
The sinusoidal oscillations for the linear limit (:0 = 0) turn into the hyperbolic secant saturation at
:0 = 5/9 signifying the self-trapping transition but on further increase of the nonlinearity display
unexpected behavior: a new (amplitude) transition occurs at :0 = 5/8 which, as the text will
explain, signifies the initial state of the dimer being one of its stationary states thus having no time
dependence whatsoever. What is remarkable is that this happens at a finite value of the nonlinearity.
Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

The surprise occurs as the nonlinearity increases beyond the critical value for
the self-trapping transition. The dn oscillations decrease in amplitude and increase
in frequency as in the localized or the in-phase delocalized cases. However, when
j/4+ = :0 hits the value 5/8, the probability di�erence ?(C) becomes completely
independent of time.

Losing all time dependence in this fashion occurs for the other two cases studied,
the fully localized and the in-phase delocalized, only at an infinite value of the
nonlinearity. For the out-of-phase case it happens, by contrast, at the finite value of
5/8. This is a new kind of transition. When we discovered it (Tsironis and Kenkre,
1988), I decided to name it the amplitude transition to distinguish it from self-trapping
which we thought of as a frequency transition.
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It turns out that increasing the nonlinearity beyond the characteristic value 5/8
for the amplitude transition uncovers another unexpected behavior. It is displayed in
Fig. 3.3. The oscillations of the probability di�erence now lie entirely on the other
side of 0.6. What this means is that, on the average, the initially more populated
state tends to get more populated than the initially less populated one! In the other
two cases (localized and in-phase delocalized, respectively) the evolution tended to
equalize the site occupations. Here the opposite is true.1

For the purposes of reference, Fig. 3.3 shows the self-trapping transition curve
(dashed line), i.e., the secant hyperbolic that results for :0 = 5/9, an intermediate
curve (dotted line) for :0 = 7/12, and the amplitude transition curve (solid blue), the
constant that occurs for :0 = 5/8. This links to what we have seen in Fig. 3.2. The
focus of the display in Fig. 3.3 is, however, on the solid curves marked (a) :0 = 6/9,
(b) :0 = 7/9, (c) :0 = 1, and (d) :0 = 5.

First, we see that, on exceeding the :0 characteristic of the amplitude transition, the
oscillations of ?(C) occur with steadily increasing frequency. Further investigations
uncover even more interesting behavior. The amplitude of the oscillations of ?(C) first
increases on increasing the nonlinearity, ?(C) always oscillating only on the other
side of the stationary state constant value 0.6 as we have seen. But subsequently, the
amplitude begins to decrease slowly, on a logarithmic scale: for large increases in
:0, ?(C) returns to the constant value 0.6. This is made more clear by Fig. 3.4 in
which the average < ? > of the probability di�erence as well as the amplitude of its
oscillations are plotted on the same graph.

There is little question that exciting new features emerge in the out-of-phase case.
In order to understand their origin, it is natural to examine the variation of the elliptic
modulus : as the nonlinearity j, consequently :0 = j/4+ , is varied. This we do
next.

3.1.3 Meaning of the Amplitude Transition

Let us examine how the square of the elliptic modulus : behaves as the nonlinearity
ratio :0 = j/4+ is varied. Fig. 3.5 shows the variation. The main figure addresses
the out-of-phase case and the corresponding variation is shown in the inset for the
in-phase initial condition. Both the inset and the main figure show :

2 increasing as
the nonlinearity is increased, the intersection with the horizontal at : = 1 marking
the self-trapping transition (at :0 = 5/9 for the out-of-phase case in the main figure
but at the much larger value :0 = 5 for the in-phase case in the inset). The out-of-
phase case shows an additional feature: :2 blows up to infinity at :0 = 5/8. This is
the amplitude transition. As shown by Tsironis and Kenkre (1988), it is indicative of
the initial state being coincident with a stationary state of the nonlinear dimer.

Further increase of the nonlinearity brings : up from negative infinity to a maxi-
mum value. It then undergoes a slow decrease, eventually to negative infinity. While

1 What is happening here is confirmation of a principle that in real life is known as the ‘rich get
richer’ phenomenon.
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Fig. 3.3 What happens for values of the nonlinearity parameter :0 beyond that characteristic of
the amplitude transition. As in Fig. 3.2, the time evolution of the probability di�erence ? (C) is
plotted but the range of ? values is restricted from 0 to 1 to make new features clearer. Two of
the curves shown are repeated for reference from Fig. 3.2: the (dashed) self-trapping transition
for :0 = j/4+ = 5/9 and the solid blue amplitude transition curve for :0 = 5/8 that marks the
stationary state as explained earlier. An intermediate (dotted) curve is also shown for :0 = 7/12.
New curves for :0 > 5/8 show oscillations occurring on the other side, i.e., maintaining ? (C)
always larger than the initial value 0.6. The first three, for values of :0 equaling (a) 6/9, (b) 7/9 and
(c) 2, show the oscillation amplitude increasing but the fourth, (d) for :0 = 5, shows a decrease in
the amplitude. See Fig. 3.4 for more on this last observation. Copyright Vasudev M Kenkre, 2021.
All Rights Reserved.

this may not necessarily be appreciated from the plot, it is quite clear form the
expression. The behavior of :2 explains all the behavior observed visually in the
evolution of ?(C) and also suggests transformations of : , one to bring it within
the 0 to 1 range and the other associated with the imaginary Jacobi transformation
of the argument.2 The essence of this combination of transformations is that, as :
changes by variation of :0 via the negative-sign expression in Eq. (3.3), we start with
? = ?0cn(?0:0:

�1
g, :), go through ? = ?0dn(?0:0g, :

�1
), and end up with

2 These transformations have been introduced in Chapter 1.
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? = ?0 nd
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!
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This expression, given by Eq. (3.4), is the appropriate one to use, and has been
so used, to plot the probability di�erence curves for : values greater than that
characteristic of the amplitude transition. The reader is reminded that the Jacobian
elliptic function nd is nothing other than the reciprocal of the dn function.

In order to support their assertion that the meaning of the amplitude transition
was the initial state coming into coincidence with a stationary state of the nonlinear
dimer, Tsironis and Kenkre (1988) showed that precisely the same happens to the
linear nonresonant dimer. For that simple system, the solution for ?(C) has been
provided for a localized initial condition as Eq. (2.9). It is straightforward to write
the full equation of motion for abitrary initial conditions as

Fig. 3.4 Further display of the behavior of the probability di�erence ? (C) for the out-of-phase real
initial condition case. The average of ? (C) over a cycle (green line) and its amplitude of oscillations
(blue line) are both plotted as a function of :0 in the main Figure, with their transition points
(self-trapping and amplitude transitions, respectively, at :0 = 5/9, 5/8) marked with little circles
on the x-axis. Both display an increase for increasing :0 beyond the transitions but then a decrease,
the average < ? > to the initial value 0.6 and the amplitude to the value 0. The inset shows the
corresponding variation of the frequency of ? (C) behaving similarly to the initially localized case
in Fig. 2.2. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.
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Fig. 3.5 The elliptic parameter, i.e., the square of the elliptic modulus, plotted as a function of the
nonlinearity ratio :0 = j/4+ for the out-of-phase real initial condition in the main figure and for
the in-phase real initial condition in the inset. The latter has only one interesting transition (self-
trapping) where the modulus attains the value 1, which for the case treated in this section occurs at
:0 = 5. In the main figure, i.e., for the out-of-phase case, two transitions occur: self-trapping where
the modulus equals 1 (:0 = 5/9) but, on further increase of :0, the amplitude transition where the
modulus becomes infinite (:0 = 5/9) as the initial state comes in coincidence with a stationary
state of the system. These values correspond to ?0 = 0.6 as in Figs. 3.1 and 3.2. See text. Copyright
Vasudev M Kenkre, 2021. All Rights Reserved.

3
2
?

3g
2
+ (1 + X

2
)? = XA0 + X

2
?0 (3.5)

with X = �/2+ , the energy of site 1 being� larger than that of site 2. Stationary states
are obtained by putting time derivatives to zero. It is now entirely straightforward to
prove that, starting from X = 0, it is possible to make an initial out-of-phase real state
(@0 = 0) coincide precisely with the stationary state by simply varying the magnitude
of �, maintaining its sign. It also follows that it impossible to do the same for an
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initial in-phase real state.3 The reader is strongly encouraged to go through this easy
exercise.

The natural question asked by Tsironis and Kenkre (1988) when they discovered
the unexpected amplitude transition was whether it was a consequence simply of the
nondegeneracy created by the nonlinearity through the self-trapping phenomenon or
an individual independent consequence of the interplay of quantum dynamics and
the nonlinearity. It was particularly relevant to ask this question because the transition
occurred only in the region of nonlinearity values already larger than that required
for the onset of e�ective loss of resonance induced by the nonlinearity. The answer
is clearly that it is not an additional consequence of nonlinearity-quantum interplay:
it occurs even without nonlinearity for a nonresonant situation. The demonstration
in (Tsironis and Kenkre, 1988) makes this quite clear.

3.2 Complex Initial Conditions

Let us now relax the constraint of real initial conditions, introduce a non-vanishing

@0, and accordingly replace the earlier relation A0 = ±

q
1 � ?2

0 by

A0 = ±

q
1 � ?2

0 � @
2
0. (3.6)

We know that the condition for self-trapping is that the modulus reach and exceed 1.
The critical value of the nonlinearity, j2 is now still given by a simple expression:

j2

4+
=

1 + A0

?
2
0

=

 
1

?
2
0

! ✓
1 ±

q
1 � ?2

0 � @
2
0

◆
. (3.7)

If j < j2 , the particle executes periodic motion, and ?(C) follows cn function
behavior. When j exceeds the critical value, the particle is trapped. As in the @0 case,
the negative sign option in Eq. (3.7) corresponds to particularly interesting behavior
and will be the only one treated here. It is clear at the outset that there is no way that
an initial state with @0 < 0 could be made to coincide with a stationary state of the
dimer. This is so because stationarity implies @0 = 0, the quantity @ being the time
derivative of ? for all time obviously including the initial time.

Raghavan et al. (1997) addressed the variation of the square of the elliptic modulus
as in Fig. 3.5 and showed that, in the presence of a non-vanishing @0, no blow-up of
:

2 occurs. Around where the nonlinearity ratio attains values characteristic of the
blow-up in the @0 = 0 case, now for nonvanishing @0, all one sees is a characteristic
modification looking like a discontinuity. There is little other change. They also gave
a detailed comparison between the nonlinear and the linear nondegenerate dimers
in the context of the dependence of the amplitude of oscillations past the amplitude

3 The reader who consults the original reference cited is gently warned that the symbols used in the
original references do not necessarily represent the same quantities as here in the book.
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Fig. 3.6 Comparison of the variation of the amplitude of oscillations in the nonlinear dimer (main
plot) and in a linear nondegenerate dimer (inset) with changes in the nonlinearity ratio j/4+ for
A0 < 0 and ?0 = 0.8 for two values of @0: 0 and 0.1, respectively. Plotted in the inset along the x-axis
is the nondegeneracy �/4+ rather than the nonlinearity given that the dimer considered in there
is linear. The display shows both the e�ect of @0 < 0 and the fact that nondegeneracy in a linear
system has the same consequences for the phenomenon studied as nonlinearity in a degenerate
system provided the nonlinearity is beyond the value required for the self-trapping transition to set
in.

transition and showed visually as well as analytically that the argument we have
presented above is borne out in detail. We reproduce their graphical display in Fig.
3.6 and refer the reader to the original paper for details.4

Of the two questions we posed at the beginning of this Chapter, how is self-
trapping a�ected by a delocalized initial condition, and what does phase-nonlinearity
interplay introduce into the evolution, we have seen that the second has complex
answers. Interesting discussions and insights have emerged throughout the foregoing
analysis.

In order to readdress the first, easier, question succinctly, let us inspect Fig. 3.7
in which, for the restricted case of real initial conditions, we display, following
Raghavan et al. (1997), the critical value j2/4+ of the nonlinearity ratio. That is

4 Although the plot displayed here from the publication of Raghavan et al. (1997) refers to ?0 = 0.8
while we have considered ?0 = 0.6 throughout this Chapter, all considerations and conclusions
remain the same.
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Fig. 3.7 The critical value j2 required for the self-trapping transition in units of 4+ plotted
logarithmically as a function of the initial population di�erence ?0 to show the e�ect of initial
di�erentiation of site occupation on the self-trapping. Eq.(3.7) is used by putting @0 = 0 (real initial
conditions) for simplicity. The dashed line represents the localized initial condition (A0 = 0 = @0
and ?0 = ±1 as a result) and A0 is positive in (a) but negative in (b).

the value required to cause the self-trapping transition. In Fig. 3.7 we see it plotted
against the initial probability di�erence ?0 for real initial conditions, for the in-phase
as well as the out-of-phase cases. The dashed line at j2/4+ = 1 represents the
case of the initially localized condition. As indicated in the plot, the curve above
(below) that dashed line corresponds to the in-phase (out-of-phase) initial condition.
Graphically, we see that initial delocalization has opposite e�ects in this regard: the
critical nonlinearity decreases as the magnitude of the initial probability di�erence
decreases in the in-phase case but increases in the out-of-phase case.

3.3 Fluorescence Depolarization in Stick Dimers

Thinking hard about a system in the laboratory that could display some of these
e�ects in principle, I thought of fluorescence depolarization in stick dimers that I had
worked on with my colleague Bob Knox and his then-student Talat Rahman several
years prior to these nonlinear investigations (Rahman et al., 1979).5 Sophisticated

5 In that work, what I had been called upon to do was to act as the local EEE (evolution equation
expert) and fix the equation of motion that would properly describe the motion of electronic
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instrumentation, clever ideas, and intriguing systems of study such as optical lattices
and Bose-Einstein condensates have sprung to the fore in recent times. It is my
hope that the concepts of phase-nonlinearity interplay that I have described here
will attract the attention of experimentalists to such systems. It is possible that the
relatively simple proposals for observations that I made during the work on the
nonlinear dimer with Tsironis, and later, will communicate the essence of what is
expected to be observed.

Fig. 3.8 Schematic of the fluorescence depolarization setup. Circles at the end of the molecular
dimer shown indicate optically active molecules that give rise to electronic excitation upon the
incidence of light. Unshaded circles indicate optically inert molecules so controlling their number
(the two dots in the center of the figure represent that the number is controllable) allows one to
control quantitatively the transfer interaction between end molecules. Angled arrows note the two
induced dipole moments on each optically active molecule, the `’s being dipole moments. The
polarization vector 4// is at an angle q with dipole moment `1. Reprinted with permission from
fig. 1 of (Raghavan et al., 1996). Copyright 1996 by American Physical Society.

The system I proposed for experimental investigations of what Tsironis and I
discovered in our theoretical studies of the nonlinear dimer, led by what I learnt
from my participation in (Rahman et al., 1979), is a variable-distance noninteracting
donor-acceptor pair of molecules (Stryer and Haugland, 1967). A fine example is
that of the so-called “stick-dimer” in which poly-L-proline oligomers of controllable
length are used to separate an U-naphthyl group at the carboxyl end - the donor -
from the dansyl group at the imino end - the acceptor -, and the e�ciency of energy
transfer is studied through measurements of fluorescence excitation, emission and
polarization spectra. Here let us take the donor and acceptor to be identical molecules.
On illumination, either of the molecules in the pair may undergo electronic excitation.

excitation across the two sites of a stick dimer. What I had succeeded in doing for the Knox-
Rahman research was to modify a stochastic Liouville equation so it gave the correct thermal
equilibrium and moreover allow the investigator to move from representation to representation
while using it.
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The direction of the transition dipole moment produced on the molecule through the
process of excitation depends on geometrical factors and is generally di�erent for the
two molecules in the pair. Not to complicate the example too much, let us take the two
dipole moments to be coplanar and mutually perpendicular. Shining (broad-band)
polarized light in such a way that the excitation beam is incident perpendicular to
the plane in which the transition dipoles lie, and varying the angle of polarization
of the incident light beam results, in principle, in varying the relative amplitude of
probability of excitation of either molecule.

3.3.1 The Observable and Relation to the Dimer Density Matrix

If �// and �? are the intensities of fluorescence polarized respectively parallel and
perpendicular to the direction of polarization of the incident light, the observable we
will focus on is the “degree of fluorescence polarization" 5 defined as6

5 =
�// � �?

�// + �?
. (3.8)

For details of the formalism I refer the reader to the work of Rahman et al. (1979).
Generally, the intensity of fluorescence in the direction of the unit vector 4_ is given
by

�_ =
’
<,=

d<= (`< • 4_) (`= • 4_)

In terms of the product of density matrix elements and dot products (represented
by bullets here) of the (induced) dipole moments ` in each state in a complete
representation, e.g., at each site. The assumption of mutually perpendicular dipole
moments allows us to focus on the essentials of our problem and write

`1 • 4// = `2 • 4? = cos q; �`1 • 4? = `2 • 4// = sin q. (3.9)

Here q is the angle made by the polarization of the incident light with the induced
dipole moment on molecule 1. Equation (3.8) then allows us to calculate the central
observable 5 in terms of the Bloch vector components ? and A whose evolution here
in this section of the book is given by the DNLSE:

5 (C) = ?(C) cos 2q + A (C) sin 2q. (3.10)

Here and elsewhere in the book, I will display this observable either as the time-
dependent 5 (C) directly from Eq. (3.10) or, in its steady-state version, with g0 as the
radiative lifetime of the excitation7 as

6 I have departed from the common usage in the fluorescence depolarization community which
uses ? for this quantity. That symbol already stands for the probability di�erence in our discussions
here.
7 Not to confuse it with the dimensionless time g = 2+ C .
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5B =
1
g0
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1
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0
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0
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�C
0
/g0

. (3.11)

3.3.2 Observable in the Absence of the DNSLE

In order to appreciate how motion characteristics of the excitation are reflected in
the fluorescence observable, let us first examine what 5 would be if the DNSLE and
possibilities of self-trapping were not operative. Only after we have internalized the
connection between motion and the observable, we will inspect the consequences of
the DNLSE.8

In the absence of nonlinearity, i.e., in a linear undamped dimer, j = 0 and one
obtains, from Eq.(3.10),

5 (C) = sin2 2q + (cos2 2q) cos 2+C, (3.12)

with the consequence from Eq. (3.11) that the steady-state result is

5B =
cos2 2q

1 + 4(+g0)2
+ sin2 2q. (3.13)

What happens to the observable if we include scattering of the excitation (stochas-
tic interaction with a reservoir) represented in the standard simple manner of the
stochastic Liouville equation where U is the scattering or rephrasing rate, the equa-
tion of evolution being (2.6) for ?(C) with an associated equation for A (C)? The result
is (Kenkre, 1994c)

5 (C) = (cos2 2q)4�UC/2 [cos⌦C + (U/2⌦) sin⌦C]+(sin 2q)
�
A4@ + [sin 2q � A4@]4

�UC
�
.

(3.14)
Here the value of A4@ is tanh(+/:⌫)) at temperature ) , with :⌫ as the Boltzmann
constant, and the quantity ⌦ =

p
4+2 � (U/2)2 arises from a combination of the

transfer interaction and the damping interaction.9
The degree of fluorescence polarization evolves from an initial value of 1 to

(sin 2q) tanh(+/:⌫)). We see that this value is dependent on the polarization angle
q. Thus, if the incident light has its plane of polarization parallel to the induced
dipole moment on one of the molecules (and perpendicular to that on the other
molecule), the degree of fluorescence polarization 5 vanishes at large times. For
other inclinations of the incident polarization plane, 5 (C) does not vanish at long
times.

The steady-state 5B from Eq. (3.11) then emerges, in agreement with the results
of (Rahman et al., 1979), to be:

8 Although these expressions were not made available in the original publication (Kenkre and
Tsironis, 1988), I have published the results elsewhere later (Kenkre, 1994c) in the context of
application of thermal e�ects.
9 Needless to say, if ⌦ is real (imaginary), the evolution of 5 is underdamped (overdamped).
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5B =
(4 cos2 2q) (1 + Ug0)

(2 + Ug0)
2 + (16+2 � U2)g2

0

+
sin 2q
1 + Ug0


sin 2q + Ug0 tanh

✓
+

:⌫)

◆�
. (3.15)

3.3.3 Self-trapping E�ects on Fluorescence Depolarization

Now that we have seen what the fluorescence polarization observable does with
linear (including stochastic linear) equations of motion, let us calculate what our
elliptic function results are from the DNLSE. As given explicitly elsewhere (Kenkre,
1994c), the time-dependent expression is

5 (C) = (cos2 2q)cn(DC,f) + (sin 2q) [sin 2q � f(cos2 2q)sn2
(DC,f)], (3.16)

with

D = 2+b cos 2q, (3.17a)

f =
bj

4+
, (3.17b)

b =
cos 2qp

1 + (j/2+) sin 2q
. (3.17c)

A graphical display by Kenkre and Tsironis (1988) reveals the e�ects of self
trapping clearly as shown in Fig. 3.9. It is interesting that the noteworthy features
appear for polarization angles larger than than 90 deg and for nonlinearities larger
than 2V; it is in the latter region that self-trapped states appear in the energy spectrum
of the dimer.

It is clear from a perusal of Figs. 3.10 (and 3.9) that the consequences of nonlin-
earity that our analysis predicts are the mild variation of 5B (q) with the nonlinearity
j in the region j < 2+ , the transition at j = 2+ , the minima that develop in the
dependence near q = 135 deg and the unmistakable cusp at 135 deg.10 The fact that
the variation of the angle of polarization q spans the two transitions that we have dis-
cussed as consequences of the phase-nonlinearity interplay, the self-trapping and the
amplitude transition, is what is behind the peculiar behavior. The stationary states of
the linear resonant dimer are characterized by the site-state amplitudes 21,2 = 1/

p
2

for the symmetric case and 21,2 = ±1/
p

2 for the antisymmetric case, respectively.
The two states thus possess resultant dipole moments that make respectively the
angles 45 deg and 135 deg with the dipole moment of molecule 1. At these values
of the polarization angle, the excitation would find itself initially (and consequently
forever) in a stationary state. Curve (a) of Fig. 3.10 which is for j = 0, indeed shows
that 5B equals 1 at these stationary state angles 45 deg and 135 deg.

10 The inset in Fig. 3.10 visually clarifies the meaning of the angle q. Transition dipole moment
pairs `1,2 are in the site-representation directions and `+,� in what would have been eigenstates
in the absence of the nonlinearity. The vector 4_ lies along the polarization vector of exciting or
emitted light and q is measured from the direction of `1.
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As j increases in value but is still lower than 2+ , the stationary state angles
remain identical to those of the linear dimer. E�ects of nonlinearity are there but
not significant. When j hits the value 2+ , however, the characteristic e�ects of the
nonlinearity set in. The trivial stationary states with equal occupation of both sites is
reflected in the plots in the fact that the peak at 45 deg is maintained for all values of
the nonlinearity. As j exceeds 2+ , a second stationary state appears in the nonlinear
dimer. It is this state that is responsible for the novel features of the figures. The site
amplitudes in this state are quite di�erent and represent self-trapping,

21,2 =

p
1 ± (2+/j)2

p
2

.

For values of j in excess of 2+ , the nonlinear dimer acts like a non-resonant dimer
although it is inherently resonant. The site amplitudes in the stationary state are
clearly unequal and the resultant dipole moment of the stationary state, which was
at 135 deg to that of molecule 1, now slips away from that orientation. The value of
j determines the amount of this slipping. Curves (d) and (e) in Fig 3.10 show this
slipping or shift of the maximum of 5B . with 1 and 2 corresponding to the plus and
the minus signs respectively.

The source of the visually dramatic ‘pinning’ e�ect at 135 deg visible in the plots
is merely conflicting symmetries in the nonlinear dimer. When the self-trapping

Fig. 3.9 The steady-state fluorescence polarization degree 5B , i.e., integrated over time, plotted as
a function of the angle of polarization q (in deg) and of the nonlinearity ratio j/4+ . The linear
limit is clear in the foreground in (a) and the result of large nonlinearity is clear in the foreground
in (b). The displacement of the 5B � q maximum as one moves along t he the nonlinearity axis
and an apparent “pinning” of the 5B � q curve at q = 135 deg as well as the value j/4+ = 1/2 at
which one sees a transition in the q-dependence are noteworthy features. The value of 2+ g has
been assumed to be 1 for simplicity. Reprinted with permission from fig. 1 of Ref. (Kenkre and
Tsironis, 1988); copyright (1988) by Elsevier Publishing.
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Fig. 3.10 Nonlinearity e�ects on the steady-state degree of fluorescence polarization 5B in Eq.
(3.11). This is a projection of the 5B-q-j surface shown in Fig. 3.9 on the 5B-q plane. The
nonlinearity ratio j/4+ has the respective values (a) 0, (b) 0.2, (c) 0.5, (d) 1, and (e) 1.5. The
variation of 5B is sinusoidal for the linear case (a) and shows only a small change brought about
by the nonlinearity. The stationary state is self-trapped for curve (c) as j = 2+ and the shape
of the curve makes clear the occurrence of the transition. Unmistakable e�ects of self trapping
are clear for higher nonlinearities in curves (d) and (e): the formation of a cusp at q = 135 deg
and the minima that appear nearby as a result. The inset explains the geometrical set-up. See text.
Reprinted with permission from fig. 2 of Ref. (Kenkre and Tsironis, 1988); copyright (1988) by
Elsevier Publishing.

transition sets in, the nonlinear dimer takes on the behavior of a nonresonant (linear)
dimer. A true linear nonresonant dimer does not have its stationary state dipole
moment at 135 deg and possesses no symmetry around that particular angle. Yet
the equations underlying the nonlinear dimer, which is really a resonant entity, favor
no site or angle: there is complete symmetry around 135 deg. The emergence of
the peculiar cusp in the plots is thus the consequence of the combination of this
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Fig. 3.11 Steady-state (integrated) degree of fluorescence polarization 5B averaged over orienta-
tions plotted as a function of the nonlinearity ratio showing a hump around the critical value of
the nonlinearity signifying the occurrence of the self trapping transition. The system studied is a
solution in which the stick-dimers are oriented at random and values along the abscissa correspond
to variation of the intermolecular distance, i.e., the length of the dimer as this can be used obser-
vationally to control the + . Reprinted with permission from fig. 4 of Ref. (Kenkre and Tsironis,
1988); copyright (1988) by Elsevier Publishing.

symmetry requirement around 135 deg and the shift of the 5B peak stemming from
the shift of the stationary state.11

The experimental observation of the e�ects predicted in Kenkre and Tsironis
(1988) requires the construction of appropriate dimers and investigations which
involve orientations that are not random. The di�culty in the construction of such
systems could be one of the reasons that this experiment that we proposed more
than 30 years ago was never performed. Anticipating this possibility, we calculated
nonlinearity e�ects of the same kind in solution systems by performing an average
over orientations. Surely, most of the clear e�ects are lost through the averaging
procedure but a discernible hump appears around the critical nonlinearity value as
shown in Fig. 3.11.

11 For the sake of clarity, the e�ect has been displayed graphically under the assumption that the
self-trapped state that contributes has a lower energy at 135 deg. Symmetry of both the dimer and
the excitation process requires, however, precisely the same to occur at 45 deg. What is expected to
be observed is an equal superposition of the variation shown in Fig. 3.10 with one mirror-imaged
around 90 deg.



60 3 Phase-Nonlinearity Interplay

3.4 Chapter 3 in Summary

A number of expected as well as surprising e�ects of the interplay of initial quantum
phases with nonlinearity were studied in this Chapter, justifying thereby the title of
the entire book. The analysis went beyond localized initial conditions, asked a simple
question as to what consequences di�erential occupation of the two sites has on the
evolution and the richer question as well as how how phase-nonlinearity interplay
modifies the dynamics. The answer we found to the first question was that it depends
on whether the particle starts out in phase or out of phase at the two sites. A visual
summing of what happens was given towards the end of the Chapter in Fig. 3.7. The
behavior for the localized initial placement was found to be followed in essence for the
delocalized in-phase real condition scenario, and self-trapping occurred at a higher
value of the nonlinearity. For the out-of-phase placement there were several surprises.
Self-trapping was found to occur at smaller values of the nonlinearity relative to the
localized case. As the nonlinearity increased beyond that for self-trapping another
transition was observed at which the initial placement was completely undisturbed
with the passage of time. This happened because of the coincidence of the initial
state with a stationary self-trapped state of the dimer. For increases of nonlinearity
beyond this ‘amplitude transition’, the frequency of oscillations of the probability
di�erence increased. The amplitude of oscillations first increased and then decreased
with yet larger nonlinearity, the limit of extremely large nonlinearity resulting in the
amplitude of oscillations vanishing and the probability di�erence becoming time-
independent. An explanation of all the occurrences was given in several di�erent
ways and an application to fluorescence depolarization of stick dimers was worked
out.



Chapter 4
What Polarons Owe to their Harmonic Origins

Where does the nonlinearity in the DNLSE that gives rise to all the interesting phe-
nomena we saw in Chapters 2 and 3 come from? We have touched upon this question
in the Preface1 where we have warned the reader that in certain situations intense
debates have raged over the question particularly in the context of polaronic physics.
Chapter 9 has been designated for a description of those discussions in the polaronic
area, and Chapter 10 to an analysis of Bose-Einstein condensates, sidestepping that
issue. Although we will certainly wait for those Chapters to undertake the matter in
detail, it is helpful to understand right away that a traditional way of arriving at the
DNLSE has been to consider a simple physical representation of a standard polaronic
situation wherein a relatively slower moving particle is envisaged as slaving faster
excitations that interact strongly with it.

A polaron is, by definition, a quasiparticle such as an electron, an exciton, a vibra-
tional excitation, or a light interstitial particle, e.g., a muon or a hydrogen atom, in
such strong interaction with oscillations, such as lattice vibrations or intramolecular
motions, that it displays unusual properties in its transport and other characteristics.
Unusual properties of this kind include dramatic features such as self-trapping and
counterintuitive behavior such as an increase in the mobility with increasing temper-
ature. Such behavior is typically considered contrary to the intuition that temperature
increase should lower the mobility because a hotter environment presents the moving
particle with larger-amplitude irregular motions that break the translational invari-
ance of a crystal. The underlying physical picture that has been developed to explain
such (polaronic) phenomena is that the quasiparticle ‘digs its own well’ as a result
of its interactions with the oscillations and thereby gets self-trapped. Increasing the
temperature helps the quasiparticle to climb out of its well and move more e�ciently
than at lower temperatures. This is in contrast to nonpolaronic motion wherein an

1 As the wise say, there are two types of people in this world: those who read a book’s preface
and those who don’t. If you belong to the former class, you know what is meant by the previous
statement. If you are more relaxed about inspecting books in that you normally skip prefaces
considering them filler material, you might want to hurry back and read what you have missed; the
present author considers his preface an integral part of the book that is best read before starting on
the individual chapters.
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increase in temperature results, as mentioned, merely in greater scattering through an
increase in the oscillation amplitudes. In that non-polaronic case, the quasiparticle
moves less e�ciently than at lower temperatures. The well-digging process in this
picture corresponds to the lowering of the site energy that we have encountered in,
and is the central process leading to, the DNLSE.2

It will help the reader to inspect the basic Hamiltonian � with which most
polaronic studies begin:
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Here, 0†
<

creates the traveling quasiparticle at site <, Y< is its site energy, +<= is
its matrix element for moving from site = to site <, '< is the position of site <,
1
†
@

creates boson excitations of an oscillator of mode @ with frequency l@ , and \
has been explicitly included in the Hamiltonian to avoid possible confusion. The
most important quantity is the coupling constant 6@ of the quasiparticle-oscillator
interaction. If it is small enough to treat via a perturbation treatment, standard
transport theory is used as in descriptions of electron dynamics in metals. If it is
large, various methods have been invented including dressing transformations of
various kinds and also the DNLSE. Unfortunately, little interconnection is to be
found in the literature between the methods.

4.1 A Graphical Understanding of How the DNLSE Could Arise

In order to understand how it is thought that the DNLSE arises here, it is important
to inspect the third and fourth terms in the right-hand-side of Eq. (4.1). If of two
mutually interacting agents, one is much is faster than the other in its dynamics, it
often finds itself slaved by the slower variable and it moves quickly to adjust to the
latter. This ubiquitous situation has been argued often to occur in strongly interacting
systems with fast vibrations (created by the 1†

@
’s in Eq. (4.1)). The resulting e�ective

Hamiltonian involving only those moving particles (created by the 0†
<

’s in Eq. (4.1)
may then be viewed as depending simply on themselves with energies lowered
from their bare values Y<. The lowering is by an amount that is given essentially
by

Õ
@
6

2
@
l@ and happens only at the sites that are occupied. The proportionality

constant involved contains the probability that the given site is occupied by the
moving particle. Whereas many have assumed this argument as providing the source
of the nonlinearity as well as of a dynamical breaking of translational invariance

2 If you find this picture of the feedback process of the particle digging the well and then moving
in the consequent symmetrical structure physically appealing, you might claim membership in a
group of followers of the physical ideas set in motion by Landau, Pekar and Holstein.
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in the system, you will meet in Chapter 9 objections to this line of reasoning.3
The oscillators of a given mode have a fixed frequency in the third term and are,
thus, harmonic. Typically, it is also assumed that the restoring force that brings the
oscillators to their equilibrium follows the (linear) Hooke’s law. The quasiparticle-
oscillator interaction in the fourth term describes the site energy of the quasiparticle
as being modulated by an amount linear in the oscillation amplitude.

For the purposes of the present Chapter, let us ask the following question: what
are the consequences of taking the oscillators to be not Hookian and/or of the
quasiparticle-oscillation interaction to be not linear in the oscillation amplitude?

Our interest here in raising this question will be not in slight excursions from har-
monicity or linearity, which can be easily addressed through perturbation methods.
Rather it will be in seeking qualitatively significant departures from traditional anal-
ysis of the polaron. Unexpected answers such as the disappearance of self-trapping
on increasing the nonlinearity beyond a threshold will emerge below (Kenkre, 1989;
Kenkre et al., 1995; Wu and Kenkre, 1995; Kenkre, 1994a; Kenkre et al., 1996b;
Kenkre, 1998b; Amritkar and Kenkre, 1999). These results were the consequences
of the study I carried out in collaboration initially with my student Honglu Wu4

and also with my colleague Iris Howard. Later joint work with Christiansen and
Jorgensen from Lyngby, and most notably with Ravindra Amritkar from Pune who
added important corrections to our insights, will also be described below.

Fig. 4.1 shows the harmonic nature of the oscillators as given by the third term
in Eq. (4.1), symbolically, via a sketch of the parabolic potential (dotted line) that
governs the oscillators. It also represents the linear nature of the interaction between
the quasiparticle and the oscillators by the linear potential (dash-dotted line). Both
these are simplifications, of course, both motivated by a Taylor’s series representation
of the force in each case.

What is important to observe is that the graphical addition of a parabola and a
straight line results in just a parabola; indeed, one that is lowered and shifted as seen
in Fig. 4.1. Irrespective of the sign of the interaction, the equilibrium position of
the resultant parabola is lowered, although the sign does control the lateral direction
of the shift. The amount of lowering is proportional to the slope of the straight line
representing the interaction and this corresponds to the energy lowering varying as
the square of the coupling constant 6@ . These are all well-known facts that underlie
elementary understanding of the Stokes shift phenomenon in the chemical physicists’
community or in polaron matters in the solid state physics context. Having understood
in graphical terms how the DNLSE might be arising, let us now ask how it would
be modified if the coordinate dependence of the potential and the restoring force
are qualitatively di�erent from being linear. Such a situation could be imagined to
occur in liquid crystals (Chandrasekhar, 1992). These materials consist of partially
ordered aggregates of molecules possessing directed shapes such as rods or discs,
the coordinate of interest being rotational. Rotational polarons discussed below

3 You will also meet with an alternative argument that is free from those objections. Originated in
(Kenkre, 1989; Kenkre and Wu, 1989a,b), it is based on damping produced by the bath rather than
on the standard arguments relying on time scale disparity of two parts of the system itself.
4 He was one of the most e�cient of my students in calculations.
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Fig. 4.1 A qualitative sketch of the standard polaronic situation wherein the basic potential is
harmonic (the dotted parabola). The interaction potential is linear (shown in dash-doubledotted
line). The two when added to each other produce a shifted parabola whose curvature is retained but
whose equilibrium position is shifted laterally and the equilibrium energy is lowered. This is the
standard situation used for explaining Stokes shifts and polaron systems. Reprinted with permission
from fig. 2 of Ref. (Kenkre, 1998b); copyright (1998) by Elsevier Publishing.

could arise generally in any system in which a quasiparticle such as an electron
or electronic or vibrational excitation interacts with angular oscillations so strongly
that the presence of the quasiparticle has an appreciable e�ect on the equilibrium
direction of the molecule.

4.2 Rotational Coordinates and Nonlinear Dependence

While the left panel of Fig. 4.2 shows an alternate possibility for the restoring
potential and the interaction that is based on hyperbolic functions, let us focus on the
right panel where the potential and the interaction both have sinusoidal dependence
on the displacement.

It is easy to understand graphically what adding a sinusoid to a sinusoid does. Let
us nevertheless demonstrate it explicitly. The simple semiclassical argument of how
the DNLSE could come about5 can be envisaged as stemming from an interaction
term in the Hamiltonian of the coupled particle-oscillation system,

5 Let us here assume the reasoning on physical grounds and postpone a rigorous examination of
the validity of the semiclassical argument to Chapter 9.
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Fig. 4.2 A qualitative sketch of the suggested generalization that leads to the novel features analyzed
in this Chapter. The right panel depicts a system in which rotational motions might be represented
by a sinusoidal potential rather than parabolic. The interaction potential is also sinusoidal rather
than linear. When added to each other they produce a shifted sinusoid rather than a shifted parabola.
It should be clear that whereas in the case of Fig. 4.1 larger slopes of the interaction potential always
increase the shift e�ects, this is not true of the present case which can lead to disappearance of
polaron e�ects. See text. Modified with permission from fig. 1 of Ref. (Kenkre, 1998b); copyright
(1998) by Elsevier Publishing.

E(G<, 2<) = ⇢0G< |2< |
2
, (4.2)

2< being the quantum particle amplitude to be at site < and G< the oscillation
coordinate of an Einstein oscillator situated at that site, and considered classical.
The usual DNLSE can then be said to arise from a time scale disparity argument
applied to the coupled equations of motion
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The coupling terms in this equation are taken to arise from di�erentiation of the
interaction term E(G<, 2<) in Eq. (4.2) with respect to 2⇤

<
and G< respectively. And

the time scale disparity is argued to slave the oscillation coordinate to the expression
obtained by dropping the time derivatives. The constant ( then is nothing other than
⇢0/" where " is the mass of the Einstein oscillator at the <th site.

The two assumptions of linearity in the above standard procedure, both arise from
a Taylor series argument. The interaction term E(G<, 2<) is linear in G< and so is
the restoring force which is the product of the oscillator mass " and the term l

2
G<

in Eq. (4.5b). Our interest here lies in relaxing these two linearity assumptions and
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considering nonlinear restoring forces " 5 (G<). We will not be interested in further
complexities that can be introduced by nonlinearities of E(G<, 2<) in |2< |

2.
Systems in which nonlinearities might be particularly relevant are ones in which

G< is a rotation rather than a vibration. (Hence the title of this chapter.) To emphasize
this, we will describe G< here as an angle variable \<. The system could thus be
an electron/exciton moving among the sites < of a chain, there being a rotator (for
instance a dipole) at each site< whose angle from a fixed direction is \<. Periodicity
in \< is obviously essential at least at every interval of 2c: this means that nonlinear
e�ects of the kind we seek could be quite important for rotations that are not too
small compared to 2c. Thus, we replace Eq. (4.2) by

E(G<, 2<) = ⇢ (\<) |2< |2, (4.4)

and obtain thereby, in place of Eqs. (4.5),
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The constant ' is essentially the moment of inertia of the rotator. The prime denotes
di�erentiation with respect to the argument.

The time scale disparity argument mentioned earlier, used to eliminate the angle
variable \<, then produces the new DNLSE
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where ⌘( |2< |2) is simply �⇢ (\<), the quantity \< being expressed as a function of
|2< |
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What Eq. (4.6) tells us in a physical sense is that, for this rotational system, the
energy of an occupied site is lowered by the nonlinearity e�ect just as in the simple
DNLSE but not merely by an amount proportional to the probability of occupation.
Instead, the lowering happens by an amount which is a function ⌘ of that probability.
The function is determined in turn by the dependence of the restoring agent 5 and
of the particle-displacement interaction ⇢ on the (angular) displacement \<. The
specific manner in which ⌘ depends on the probability of occupation of the <th site
is given by Eq. (4.7). We will see that exciting novel e�ects await us as a result.

We now have, generally as a consequence of Eq. (4.7), the density matrix equation
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For nearest neighbor interactions +<= = + (X<,=+1 + X<,=�1), it takes, as expected,
a form similar to Eq. (1.6). The striking di�erence is, however in the content of
the factor in the last term of Eq. (4.8) in that what multiplies d<= is not merely
proportional to the di�erence of the probabilities of occupation at sites < and =.
Instead, it is the di�erence of the ⌘-functions evaluated at those probabilities. For
the dimer (< = 1, 2), reduces to the generalized Bloch vector equations6
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where 9 (?) is given by
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To maintain our own orientation in these systems wherein the rotating molecules
may change theirs, let us point out to ourselves that, for the simple DNLSE that
we have studied so far in the book, ⌘ is linear in the probability, the proportional
constant being what we have termed throughout as the nonlinearity j. Thus,

⌘(H) = jH; 9 (?) = j?.

For the rotational polaron, however, both ⌘ and 9 are strongly nonlinear in their
argument.7 The dynamical equations (4.9) are thus a simple generalization of Eqs.
(1.8) and might be approached in essentially the same manner.

In order to solve for the dynamics of the system we use the methods we learned
for the simple DNLSE dimer. We obtain a closed second order equation for the
probability di�erence ?(C) from Eqs. (4.9), use the potential method to solve for
the classical mechanical motion of the representative particle whose displacement
is ?(C), and inspect the solutions obtained to quadratures. However, the procedure
must be preceded by an precise identification of the nonlinearity function ⌘ and
consequently 9 . For the sake of simplicity, let us examine what we get for the simplest
assumption that both the restoring force 5 (\<) and the interaction energy ⇢ (\<) are
proportional to the sine of a multiple of the angular displacement \ = \1 � \2,

6 For the sake of the reader who might consult the original publications on this material, I point out
that the function 9 (?) introduced here in the book is related to the 6 (?) in the original publications
by the simple relation 9 (?) = 36 (?)/3?. The reader will meet the 6 (?) explicitly in Eq. (4.17).
7 I am enormously tempted to state here that the ordinary DNLSE (1.2) is, thus, characterized by a
linear nonlinearity. And that the present Chapter is the exploration of the departure from linearity
of the nonlinearity functions ⌘ or 9. However, I control myself. Let me desist from making such
an assertion because I am afraid that what might win out in the mind of the reader is a demand for
clarity rather than entertainment via confusion over a sense of (peculiar) word-play humor.
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5 (\) =
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, (4.11a)
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I have selected the expressions so that under the single limit ⇤! 0, we recover the
linear case and, through it, the standard DNLSE situation. With the definitions of a
new ‘saturation parameter’ �B and the old nonlinearity parameter j, we write
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In subsequent discussions, the dimensionless ratio j/2�B that measures the nonlin-
earity relative to the saturation energy will acquire significance. We note in passing
that, in terms of the internal parameters specified here, it is given by
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Straightforward calculations lead to an ⌘-function that involves not only the
probability of occupation but its square as well. For low values of the nonlinearity
parameter, the ⌘-function behaves linearly as in the standard case but it has the
remarkable feature that it saturates8 to a constant independent of the probability for
high values of the nonlinearity:
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The all-important 9 (?) appearing in the generalized Bloch vector equations (4.9)
then has the form
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which can also be rewritten as
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Equation (4.15) shows that if the saturation energy �B is large with respect to the
nonlinearity j so that j/2�B may be neglected, the function 9 (?) is linear in the
probability di�erence and the standard DNLSE is recovered. On the other hand, Eq.

8 Here we have arrived at one of the striking consequences of the rotational idea. Inspection of the
sinusoids in Fig 4.2 has already prepared the astute reader, I am certain, to this occurrence. There
is more to come.
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(4.16) shows that in the opposite limit, when the saturation energy is vanishing, more
interesting and varied behavior emerges. It will be the focus of our discussions in
further sections.

4.3 Surprises in the Dynamics of the Rotational Polaron

What do we obtain when we follow the standard program of converting the Bloch
equations (4.9) into a second order equation for the probability di�erence ? and
solving it to quadratures? Let us examine the time dependence of the probability
di�erence in this manner for the simplest localized case, i.e., when one of the two
sites is fully occupied? I urge the reader strongly to verbalize the expectation before
calculating or reading on. What do you expect to happen to the time dependence
given that we have sighted the possibility of a saturation with increasing nonlinearity?

Figure 4.3 shows the result graphically. The probability di�erence ? is plotted as a
function of the dimensionless time 2+C for 3 values of the nonlinearity ratio j/2+ in
three panels (upper, central and lower) each characterized by one value of the satura-
tion energy �B relative to 2+ . Respectively, the value �B/2+ is large, i.e., 100 (upper
panel (a)), relatively small, 2.5 (central panel (b)), and subcritical, 2 (lower panel
(c)). In each panel, the solid lines denote small nonlinearity (j/2+ = 0.5) relative to
the bandwidth, the dotted lines describe intermediate nonlinearity (j/2+ = 5), and
the dashed (faintest) lines represent the highest nonlinearity (j/2+ = 9). The upper-
most panel shows behavior similar to that predicted by the standard DNLSE. It is
what we have come to look upon as natural (see, e.g., Fig. 2.1) in that free motion for
small nonlinearity is replaced by slower motion showing strong nonlinearity e�ects
of slowing down as the period of the oscillation becomes large and then, finally for
the largest nonlinearity, self-trapping occurs.

Two surprises emerge, however, in panels (b) and (c).

In the central panel (b), nonlinearity displays a non-monotonic e�ect. The free
motion depicted by the solid line gives way to self-trapping shown by the dotted line
as ? oscillates only on one side of the dimer but further increase in j brings the
oscillation to acquire again its free character as ? oscillates on both sides.

In the lower panel (c), self-trapping is completely destroyed. The saturation pa-
rameter �B is low enough to make it impossible for the particle to be self trapped
no matter what the value of the nonlinearity j/2+ . The oscillation for all values of
the nonlinearity is on both sides and the motion is fundamentally di�erent from the
situation in the standard DNLSE represented in the upper panel (a).
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Fig. 4.3 Noteworthy e�ects in the Rotational Polaron: The time evolution of the probability di�er-
ence ? (C) is plotted for initial localization on one site for various parameter combinations. Behavior
akin to the standard DNLSE is observed in the top panel: free motion changes into self-trapped
motion as nonlinearity is increased. A new feature is observed in the middle panel: further increase
of nonlinearity destroys the self-trapping and the motion becomes free again. Another new feature
appears in the bottom panel for another parameter combination: no self-trapping ever occurs no
matter what the value of nonlinearity. Adapted with permission from fig. 3 of Ref. (Kenkre et al.,
1995); copyright (1995) by American Physical Society.

4.4 Non-monotonicity and Stationary States

In order to gain a better understanding of the origin of the novel results, let us
inspect how the potential* (?) constructed to obtain the time-dependent solution to
quadratures changes its shape as the nonlinearity is changed.
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4.4.1 Potential Considerations

The form of (4.16) facilitates the integration of 9 (?) into a function 6(?) such that
its ?-derivative equals 9 (?) and 6(0) = 0. It is obviously given by
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The potential expression which, for the simple case of the infinite �B limit (equiva-
lently, the standard DNLSE case) is given by
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for arbitrary initial conditions, involves �B and gains interesting new properties. The
general expression for arbitrary �B , being tedious, is not shown here but, for the
localized case specifically, its peculiar properties are displayed in Fig. 4.4.

The case considered in the plot addresses initial localization on one site (?(0) =
?0 = 1) and a saturation parameter �B having the value 6 in units of 2+ . Three values
of nonlinearity are considered, characterized by j/2+ = 2, 8, 12. Initial localization
with ?(0) = 1 means that the system starts on the extreme right where the horizontal
line intersects the vertical line at ? = 1. In the lowermost curve (solid), the motion
is free as the particle oscillates on both sides of the dimer. The thick blue arrow
pointing upwards shows the next higher nonlinearity curve (dotted) for which the
nonlinearity is 3 times larger than in the first case. The intersection of the horizontal
line with the potential curve clearly shows that self-trapping has occurred as the
particle oscillates only between the values 1 and a little over 0.6 only on the right
side. The thick blue arrow pointing downward shows the next higher nonlinearity
curve (dash-dotted) which is the central curve. We see that the particle motion has
become free again with oscillations of ? between 1 and -1. The potential* (?) thus
explains in total clarity the first of the two e�ects shown in the time-dependent plots
of Fig. 4.3. The second e�ect, no self-trapping for any nonlinearity, arises from the
�B being so small that self-trapping does not have a chance to occur in the first place.
In order to gain a full understanding of it, let us now study the stationary states of
the rotational polaron (Wu and Kenkre, 1995).

4.4.2 Stationary States of the Rotational Polaron

Essential insights into the nature of a nonlinear system can be gained by studying its
stationary states. To obtain the states, one puts all time derivatives in the dynamical
equations such as (4.9) to zero. Let us denote all stationary state values by the su�x
BB. From the first and the third of (4.9) we deduce that @BB = 0. Because the condition
?

2
+ @

2
+ A

2 = 1 must be satisfied at all times and consequently also in the stationary
states, we can be certain of



72 4 Nonlinearities from Anharmonicity

Fig. 4.4 Onset of self-trapping and its eventual disappearance with increase of nonlinearity j shown
through the dependence of the dynamic potential * (?) plotted as a function of the probability
di�erence ? in the rotational polaron dimer. The saturation parameter �B = 6 for all three curves
shown for respective values 2, 6, and 12 of the nonlinearity ratio j/2+ as indicated on the plot.
Thick arrows show that the increase in nonlinearity takes the system from the lowermost curve (low
nonlinearity) that represents free motion to the uppermost curve (intermediate nonlinearity) that
signifies self-trapped motion. However, further increase in the nonlinearity frees the quasiparticle.
Whether the motion is free or self-trapped is visible from where the horizontal line at the zero of
* (?) cuts the potential curve. See text. Modified with permission from fig. 2 of Ref. (Kenkre et al.,
1995); copyright (1995) by American Physical Society.

ABB = ±

q
1 � ?2

BB
,

whose substitution in the information obtained from Eq. (4.9b) yields the relation
satisfied by ?BB:

2+?BB ± 9 (?BB)

q
1 � ?2

BB
= 0, (4.19)

where 9 (?) is available from Eq. (4.15) or (4.16) and directly involves the saturation
parameter �B . From the explicit form of 9 (?BB) that we know, for instance from Eq.
(4.15), it is clear that ?BB = 0, the free state, is always a stationary state. It refers to
the plus sign in Eq. (4.19). The minus sign case leads to self-trapping.

Not all the stationary states identified via (4.19) are stable. In order to determine
their stability, we analyze whether small departures in the Bloch vector components
from their stationary states have a tendency to grow as time evolves, thus leading to
the destruction of the states, or decay to zero, thereby causing the system to return to
them. This standard procedure (see, e.g., (Nicolis, 1995; Strogatz, 2018)), consists
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of writing D = DBB + nD for D = ?, @, A in turn, substituting in the dynamical equations
(4.9) and determining whether the departures tend to become larger or to disappear.
In the former (latter) case the stationary states are unstable (stable). Examination of
the eigenvalues of the dynamical matrix completes the analysis for this purpose in
the standard manner.

Wu and Kenkre (1995) showed that the second of the Eqs. (4.9) conveys the most
useful part of the required information. As a result of their argument it is found that
the departure from the stationary value @BB obeys
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and leads to the stability condition
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> 0. (4.20)

The stationary state with ABB = 1 always satisfies9 this condition. For ABB = �1, we
have the transition condition

(j/2+)2 =
⇥
1 + (j/2�B)2⇤3

. (4.21)

In the limit that the saturation energy �B is infinitely large, this result reduces to
the known simple DNLSE consequence we have explored in the previous Chapters:
an increase in the nonlinearity continues to strengthen the self-trapping that occurs
at j = 2+ . Generally, we find that the nonlinearity value at the transition is given by
the solution of the cubic equation in the parameter I = (j/2+)2:

I
3
+ 3I2 +

⇥
3 � (�B/+)2⇤

I + 1 = 0. (4.22)

Equation (4.22) has two real roots, one corresponding to the appearance and the
other to the disappearance of the self-trapping stationary states. Start with an infinite
saturation energy �B and reduce its value to so that the interesting new features
begin to emerge. As �B decreases, the two roots of Eq. (4.22) merge into one another
and become imaginary. Once that happens, self-trapping stationary states cannot
occur no matter what the value of the nonlinearity j. From the standard lore of
cubic equations (see, e.g., (Abramowitz and Stegun, 1965)), the condition for the
disappearance of the stationary states, whatever the value of j relative to 2+ , is

�B
+

<

r
27
4
. (4.23)

We will encounter an almost identical condition in the next Chapter.
The foregoing analysis has explained satisfactorily both surprises we were hit

with in the quadrature solutions of the time dependence in Fig. 4.3: the appearance
followed by the disappearance of self-trapping as nonlinearity is increased, and

9 As can be expected, this is the relatively uninspiring state that is symmetric in the probabilities.
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the complete absence of self-trapping for any value of the nonlinearity for certain
parameter combinations.

Fig. 4.5 Discontinuous (left panel) as well as continuous (right panel) transitions of the stationary
state probability di�erence in the rotational dimer as a function of the nonlinearity. Solid (dotted)
lines represent stable (unstable) states. The free state is the only stationary state for low values
of the nonlinearity in both panels. A continuous transition (sometimes referred to as ‘second
order’) is seen in the left panel at a value of j/+ close to 2.5 in the left panel and close to
3 in the right panel. Further intermediate values of the nonlinearity ratio produce self-trapping
which means that ? < 0. The two possible values, equal in magnitude but opposite in sign arise
from the symmetry of the dimer. In the intermediate region, the free state is stationary but not
stable. The remarkable destruction of self-trapping for large nonlinearity in both panels occurs in
a discontinuous manner in the left panel with resultant multiple stationary stable states at a given
value the nonlinearity but continuously in the right panel. The former means that hysteresis would
occur: a di�erent stationary state would be selected by the system according to the direction of
the change of nonlinearity. Adapted with permission from fig. 1 of Ref. (Wu and Kenkre, 1995);
copyright (1995) by Elsevier Publishing.

Observe that the conjunction of Eqs. (4.15) and (4.19) yields

4+
j

?p
1 � ?2

=
1 + ?p

1 + (j/2�B)2 (1 + ?)2
�

1 � ?p
1 + (j/2�B)2 (1 � ?)2

. (4.24)

Let us now follow Wu and Kenkre (1995) in their demonstration that the self-
trapping occurrence and disappearance on increasing nonlinearity can be understood
by plotting the functional dependence of the stationary state values of ? relative the
nonlinearity ratio j/+ for di�erent combinations of the parameters j and �B relative
to 2+ .

Two possible consequences of choosing parameter values are displayed in Fig.
4.5. In both panels, self-trapping occurs as the nonlinearity exceeds a critical value
and the onset of the appearance of self-trapping is continuous. Further increases
of the nonlinearity merely increase the probability di�erence at first which means
an intensifying of the self-trapping e�ect. However, beyond another critical value
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Fig. 4.6 Stationary state potential, (?) as a function of the probability di�erence ? for j/2+ =13
and �/2+ =4. Multiple stationary states exist, each corresponding to a potential minimum. In the
plot as shown, the central stationary state at zero ? is metastable as indicated by the central minimum
being higher than the side minima. Self-trapping, which is indicated in the plot, is destroyed when
the central minimum dips below the other two. Adapted with permission from fig. 2 of Ref. (Wu
and Kenkre, 1995); copyright (1995) by Elsevier Publishing.

of j/+ , self-trapping disappears in both panels. This disappearance transition is
continuous (second order as it is often called in phase transitions terminology) in
the right panel but discontinuous (first order) in the left panel. In the left panel one
clearly sees the possibility of hysteresis as in magnetic systems. Multiple possible
values of the probability di�erence occur in this latter case.

It is also straightforward to understand (Wu and Kenkre, 1995) that, as an alterna-
tive to the above explanation, one may construct a potential, (?) whose derivative
is given by the di�erence of the left hand and right hand sides of Eq. (4.24) and
plotted in Fig. 4.6. Multiple stationary states are seen as minima of , (?) in the
plot, free at ? = 0 and self-trapped at nonzero values of ?. Whether the transition
is discontinuous or not is decided by whether the central minimum dips below the
side minima abruptly resulting in a jump in ?BB or not as the nonlinearity ratio is
varied. This is determined by the value of �B relative to the other system energies.
The precise numerical values used have not been specified in Fig. 4.5 to emphasize
the qualitative aspect. The quantitative values are indicated in detail below in the
general considerations.



76 4 Nonlinearities from Anharmonicity

4.4.3 Some General Comments

The nature of the underlying oscillation (rotational rather than translational) and
specific forms of interaction (anharmonic and nonlinear rather than harmonic and
linear) are the ingredients that led us to the analysis described initially in this Chapter.
However, it is important to keep in mind that their role was only to provide a segway
into the physics that I have wanted to emphasize in this Chapter. The primary
motivation here is to investigate the e�ects of nonlinearity terms in the DNLSE
that can have more complexity than being merely cubic in the quantum mechanical
amplitude.

Two comments, one minor and the other major, need to be made here. The first
is that the e�ects we have seen, saturation energies leading to the destruction of
self-trapping for large nonlinearity (indeed, to the impossibility of a self-trapping
transition away from free motion for any nonlinearity for su�ciently small saturation-
nonlinearity ratio) can arise for systems vastly di�erent from what we have called the
rotational polaron. Consider the case wherein the oscillator potential is proportional
to [1 � sech(⇤G)]/⇤2 and 5 (G), ⇢ (G) are given by

5 (G) =
1
⇤

sech(⇤G) tanh(⇤G), ⇢ (G) =
⇢0

⇤
tanh(⇤G).

It is easy to show that the form of the resulting ⌘( |2 |2) is precisely the same as in Eq.
(4.14). This is true in spite of the fact that one can hardly imagine rotations among this
multitude of hyperbolic functions. The left panel of Fig. 4.2, which was introduced
in one of the original publications that explained these matters (Kenkre, 1998b),
has as its role, the conveying of the message that, although rotational polarons have
helped us understand the physics or mathematics of the material in this Chapter,
they are not essential for providing the underlying mechanism. Angular dynamics
are dispensable. All that is important is that the dependence of the ⌘-function be
nonlinear on the probability in the manner shown. The stark di�erences in this regard
in the shapes seen in the two panels of Fig. 4.2 should make this amply clear.

Indeed, neither sinusoids as in the right panel nor exponentials as in the left (of
Fig. 4.2) are essential. The same ⌘-function and identical physical consequences
also emerge from Jacobian elliptic functions making up the 5 (G), ⇢ (G)! 10 It can be
shown that

5 (G) =
1
⇤

sn(⇤G, :)dn(⇤G, :), ⇢ (G) =
⇢0

⇤
sn(⇤G, :),

also end up producing the exact same ⌘-function as in Eq. (4.14). The : appearing
here is the elliptic modulus. When it equals 0, the elliptic functions become the
trigonometric functions whereas when it equals 1, they turn into the corresponding
hyperbolic functions. At any : they produce the same ⌘-function.

10 I realized this early on when I introduced the rotational polaron idea and conveyed it through
oral presentations in the ensuing years but put in print the relevant comment only years later in the
publication (Amritkar and Kenkre, 1999).
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The second comment that is relevant here is, perhaps, even more important.
At the beginning of the Chapter, I emphasized that this manner of introducing
nonlinear equations of the Schrödinger kind by eliminating an underlying motion
has a few objectors (see Chapter 9). I have also pointed out that those objections
disappear (as shown in Chapter 9) when time scale disparity arguments are based on
considerations of the bath rather than of parts of the system itself. It might detract
from the arguments presented here, however, if the (unconvinced) reader were to
incorrectly conclude that eliminating the underlying motion, rotational or otherwise,
is an essential prerequisite to what we have learned. These novel e�ects we have
discussed are to be expected whenever the nonlinearity in the DNLSE has complexity
beyond the mere cubic which is characteristic of Eq. (1.2). Whatever the manner
it arises, it is the peculiarities of the ⌘-function in Eq. (4.8), its dependence on the
probabilities, that is responsible for the matters discussed. We have seen how the
probability dependence of the ⌘-function controls the nature of 9 (?) and how that
controls saturation, destruction of self-trapping, and related e�ects. I want to invite
the reader, therefore, to look upon the contents of this Chapter independently of the
precise manner we have so far arrived at the ⌘-function.11

4.5 Further Work on the Nature of the Transitions and
Additional Examples

Let us now look into further interesting insights that it is possible to gain into our
subject of generalized nonlinearities in the DNLSE.12

4.5.1 General Considerations

The equivalence of the standard analysis of the dynamical matrix in the linear
approximation of the departures from the stationary states (Nicolis, 1995), and of
considerations of the potential shown in Fig. 4.6 had already been shown in Wu and
Kenkre (1995). If we define a function ⌧ (?) to represent the second term of Eq.
(4.19),

11 It is to be kept in mind that cubic nonlinearity is known to arise in the Gross-Pitaevski equation for
the wave function of Bose-Einstein condensates (see Chapter 10) in a manner that appears immune
to the objections that some have raised to the polaron manner of introducing it.
12 In a highly fruitful collaboration, Ravindra Amritkar, then of the University of Pune and later
of the Physical Research Laboratory in Ahmedabad, gained these insights and extended the ideas
explained so far in the Chapter in novel directions as in studies of the nature of the transitions,
continuous or discontinuous, alternative manners of arriving at the criteria we have studied for
the transitions to occur, and phase diagrams for various situations. The collaboration started with
his correcting a slightly embarrassing sign error my later coauthors and I had made in one of our
examples. It ended up with his masterful analyses into our subject. The details he carried out may
be read in Amritkar and Kenkre (1999). Only a brief description is provided here.
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⌧ (?) =
q

1 � ?2
9 (?), (4.25)

we find that obtaining the transition is the same as looking for the intersection of a
plot of this ⌧ (?) with a straight line of slope 2+ passing through the origin. This is
a standard procedure we all learned in elementary treatments of mean field theories
and is illustrated in Fig. 4.7.

Fig. 4.7 Schematic representation of the graphical procedure to find the self-trapping states. The
function⌧ (?) that represents the second term of Eq. (4.19) is plotted along with a straight line of
slope 2+ against the probability di�erence ?. An intersection at a nonzero ? shows the stationary
state. If the straight line is tangential to the ⌧ (?) curve we are on the threshold of the transtion.
Both continuous (upper three panels) and discontinuous (lower three panels) are shown. See text.
Reprinted with permission from fig. 1 of Ref. (Amritkar and Kenkre, 1999); copyright (1999) by
American Physical Society.

Given the relation (4.10) between the ⌘-function and the 9 (?), we can rewrite
the condition for the transition between the stable and unstable free polaron state as
given by Amritkar and Kenkre (1999)


39 (?)

3?

�
?=0

=

3⌘(H)

3H

�
H=1/2

= 2+ . (4.26)

As [3⌘(H)/3H]
H=1/2, which we will call from now as ⌘0(1/2) for brevity, increases

with the nonlinearity parameter and crosses the value 2+ , we obtain a transition
from the free to the self-trapping state. As the nonlinearity increases even further,
it is possible for the self-trapping state to be destroyed if ⌘0(1/2) decreases again
and falls below the value 2+ . An interesting situation arises if ⌘0(1/2) < 2+ for all
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values of the system parameters. Then the free state always retains its stability and
self-trapping tends not to occur at all.

If Fig. 4.7, the plots (a), (b) and (c) refer to what is often called a second-order
transition13 from a free to a self-trapping state. Panel (a) shows the situation in which
the free state is stable whereas panel (b) shows the self-trapping transition. Panel
(c) where the straight line just touches the ⌧ (?)-function tangentially, describes the
transition.

The point of inflection present in the march of ⌧ (?) in the lower three panels of
Fig. 4.7 gives rise to discontinuous transitions typically called first-order. Panel (d)
shows that the free state is stable while panel (f) indicates the self-trapping state being
stable. Panel (e) is the transition. By expanding ⌧ (?) in a Taylor series for small
? to include cubic terms, one obtains the condition for crossover from continuous
transition to the discontinuous counterpart (see panels (b) and (e)) as (Amritkar and
Kenkre, 1999) 

3
3
9 (?)

3?

�
?=0

=

3

3
⌘(H)

3H

�
H=1/2

= 24+ . (4.27)

What this means is, for instance, that continuous transitions occur when both
⌘
000
(1/2) < 24+ and ⌘

0
(1/2) = 2+ . This also means that hysteresis e�ects may

be observed and manipulated if the nonlinearity j is experimentally controllable.
One end of the hysteresis loop would be given by ⌘0(1/2) = 2+ ; the other by the
simultaneous solution of ⌧ (?) = 2+? and a new condition (Amritkar and Kenkre,
1999)

4+ =

⌘
0

✓
1 + ?

2

◆
+ ⌘

0

✓
1 � ?

2

◆�
(1 � ?)

3/2 (4.28)

evaluated at ? = ?BB .14

4.5.2 Illustrative Applications for and beyond Rotational Polarons

Let us study the conditions derived above and explore phase diagrams with their help
first for the rotational polaron case and then for a few other examples of non-cubic
nonlinearities.

For the standard cubic nonlinearity, ⌘(H) = jH, and Eq. (4.26) gives j = 2+ .
The free state becomes and remains unstable as j is increased beyond 2+ . Condition
(4.27) is never satisfied (except for + = 0). Consequently, the transition from free to
self-trapping state is always continuous.

13 I personally prefer to distinguish the transitions by the usage ‘continuous’ versus ‘discontinuous’
to avoid the confusion that might arise from the acceptance by some of the Ehrenfest classification
and the appearance of the enthalpy function in that classification.
14 Needless to say the ?’s in these stationary state conditions refer to their values ?BB in the
stationary states as they do in Fig. 4.7 as well.
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4.5.2.1 Rotational Polarons

For this system, ⌘(H) is given by Eq. (4.14) and is thus seen to have saturation
character. The condition in Eq. (4.26) now gives

⌘
0
(1/2) =

j⇥
1 + (j/2�B)2

⇤3/2
= 2+ , (4.29)

which shows that the maximum of ⌘0(1/2) occurs when j/2�B)2 attains the value 2.
A significant outcome is that, if the maximum value of ⌘0(1/2) is less than ‘particle
bandwidth’ 2+ , the occurrence of self-trapping is impossible. This recovers the
remarkable condition (4.23) obtained in Wu and Kenkre (1995) for the impossibility
of self-trapping as the ratio of the saturation energy �B to the transfer interaction +
becoming less than the square root of 27/4.

Now that we have the general conditions that characterize the crossover from
continuous to discontinuous transitions in our tool-bag, we can go beyond the old
results of Wu and Kenkre (1995), note that, for (�B/+)2

> 27/4, Eq. (4.29) has two
solutions as j is varied, and use our criterion in Eq. (4.27).

For this specific rotational polaron case, we obtain

⌘
000
(1/2) = 3j(j/�B)2

"
j(j/�B)2

� 1⇥
1 + (j/�B)2

⇤7/2

#
= 24+ . (4.30)

With the help of Eqs. (4.29) and (4.30) the crossover from continuous to discontin-
uous transitions is found for the rotational polaron to occur at, with the notation that

1 = 3+
p

21
6 ,

(j/2+)2 = (1 + 1)
2
, (�B/+)2 = (1 + 1)

3
/1. (4.31)

The reader should be now in a position to appreciate the quantitative version of
Fig. 4.5 and also a phase diagram on the basis of the analysis presented. These are
presented as left and right panels of Fig. 4.8, respectively. The left panel shows a
continuous appearance as well as continuous disappearance of self-trapping in curve
(a) for �B/+ = 2.8 and continuous appearance but disappearance of self-trapping
in curve (b) for �B/+ = 6. Stable states are shown by solid lines and unstable ones
by dashed lines. Hysteresis manipulations are clearly possible for curve (b) as one
either increases or decreases the nonlinearity at the higher end. In the right panel,
which is a phase diagram in the space of �B and j plotted relative to + , I and II
denote regions of free and self-trapping states, respectively. Solid line in this right
panel corresponds to continuous transitions, dashed line to discontinuous transitions
and the dash-dot lines on the two sides of the discontinuous (dashed) line mark the
limits of hysteresis e�ects denoted by III.
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Fig. 4.8 Studies for the rotational polaron. The stationary state values of the probability di�erence
are shown plotted as a function of the nonlinearity ratio j/+ in the left panel and a phase diagram
with j/+ as the abscissa and �B/+ as the ordinate are shown in the right panel. Adapted with
permission from figs. 2 and 3 of Ref. (Amritkar and Kenkre, 1999); copyright (1999) by American
Physical Society.

4.5.2.2 Logarithmically Hard and Soft Oscillators

As examples of nonlinear systems which have features similar to the rotational
polarons in spite of the fact that they arise from quite di�erent internal mechanisms,
let us consider the logarithmic oscillators.15 If the harmonic oscillations that interact
strongly with the moving quantum particle in the context of the standard DNLSE are
replaced by oscillations arising from not the quadratic potential but from

U(G) = :0(0 � |G |)


ln

✓
1 �

|G |

0

◆
+ |G |

�
, (4.32)

and the particle-oscillation interaction is kept simple in the form ⇢ (G) = ⇢0G, our
aim is achieved. Note thatU(G) is defined only for |G | < 0, it reduces to the harmonic
potential :G2

/2 for small G/0, and diverges as |G | ! 0. In the terminology we have
used in this chapter,

15 In collaboration with Christiansen and Jørgensen of Lyngby, I analyzed one such system (Kenkre
et al., 1996b) during a sabbatical in Denmark. The reader should find that original publication
interesting to examine. An unfortunate sign error that crept into that analysis and a�ected its
terminology was spotted a couple of years later by Amritkar and corrected satisfactorily in (Amritkar
and Kenkre, 1999). We use the corrected terminology and expressions in this book.
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5 (G) = � :0 ln
✓
1 �

|G |

0

◆
for G > 0, (4.33a)

5 (G) = + :0 ln
✓
1 +

|G |

0

◆
for G < 0. (4.33b)

What ⌘-function does this system result in? If we define

j = ⌧0⇢0/: , j0 = ⇢00, (4.34)

where ⌧0 is an appropriate constant, we find

⌘( |2< |
2
) = j0

⇣
1 � 4

�
j

j0
|2< |

2 ⌘
. (4.35)

Comparison with Eq. (4.14) reveals that the similarities with the rotational polaron
are considerable in spite of the basic potentials being quite di�erent. For nonlinearity
small with respect to the saturation energy j0, the ⌘-function starts out proportional to
the probability |2< |

2 but as the nonlinearity becomes much larger than the saturation
energy, ⌘ saturates. The parameter j0 plays the role of �B .

Fig. 4.9 Onset of transitions for the logarithmically hard oscillator. The probability di�erence
in the stationary states ? (meaning ?BB) is plotted as a function of the nonlinearity ratio that is
appropriate to be taken as j/j0. Curves (a) and (b) correspond to + /j0 = 1 and 25, respectively,
and denote, in turn, a continuous and a discontinuous transition. Stable (unstable) states are shown
by solid (dashed) lines. The region of stability of the free state (?BB = 0 is shown only for curve
(b). Adapted with permission from fig.6 of Ref. (Amritkar and Kenkre, 1999); copyright (1999) by
American Physical Society.
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The transition to self-trapping happens at

⌘
0
(1/2) = j4�j/2j0 = 2+ . (4.36)

By considering the maxima of ⌘0(1/2), one finds that self-trapping does not occur
at all if (j0/+) < 4. For (j0/+) > 4, two solutions appear as j is varied. The
condition for the passage from continuous to discontinuous nature of transitions is
now

⌘
000
(1/2) =

j
3

j
2
0

4
�j/2j0 = 24+ . (4.37)

The crossover from continuous to discontinuous transition therefore happens at

+/j0 =
p

34�
p

3
, j/j0 = 2

p
3.

The onset of transitions is shown n Fig. 4.9 where the probability di�erence in
the stationary states ? (meaning ?BB is plotted as a function of the nonlinearity ratio
that is appropriate to be taken as j/j0 for the present system.

Let us now consider, briefly, the logarithmically soft oscillator which has a sign
change at some of the places in the appropriate expressions relative to the logarth-
mically hard counterpart. The oscillations take place in the potential

U(G) = :0(0 + |G |)


ln

✓
1 +

|G |

0

◆
� |G |

�
, (4.38)

with the consequence that we now have

5 (G) = + :0 ln
✓
1 +

|G |

0

◆
for G > 0, (4.39a)

5 (G) = � :0 ln
✓
1 �

|G |

0

◆
for G < 0. (4.39b)

We have once again ⇢ (G) = ⇢0G which results in an ⌘-function given by

⌘( |2< |
2 = j0

⇣
4

j

j0
|2< |

2

� 1
⌘
. (4.40)

The condition for the transition to self-trapping is now

⌘
0
(1/2) = j4+j/2j0 = 2+ . (4.41)

The great similarity to the corresponding expressions for the logarithmically hard
oscillator but with change of sign should be noticed. Observe therefore that now
⌘
0
(1/2) is a monotonically increasing function of j and there is consequently a

solution for all values of + . This is similar to the case of a harmonic oscillator rather
than of the rotational polaron. However, there is a sharp di�erence. Unlike in the
case of a harmonic oscillator, the transition for the logarithmically soft oscillator can
be both continuous and discontinuous. The condition that determines this nature of
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Fig. 4.10 Phase diagram for the logarithmically hard (left panel) and logarithmically soft potentials
(right panel ) similar to the right panel of Fig. 4.8. Adapted with permission from fig. 4 of Ref.
(Amritkar and Kenkre, 1999); copyright (1999) by American Physical Society.

the transition is now

⌘
000
(1/2) =

j
3

j
2
0

4
+j/2j0 = 24+ . (4.42)

The result is that the crossover from discontinuous to continuous transitions happens
now when

+/j0 =
p

34
p

3
, j/j0 = 2

p
3.

The phase diagrams for both logarithmical oscillators are displayed in Fig. 4.10
side by side on the basis of these considerations. Once again, as in the right panel
of Fig. 4.8 which is a phase diagram for the rotational polaron, solid lines denote
continuous transitions, a dashed line a discontinuous transition, and the dash-dot
lines limit the region of hysteresis e�ects marked by III. Free states are in the region
marked I and self-trapped states in that marked II.

Although the expressions for all conditions are nearly identical for the two systems,
the change of sign makes all the di�erence.

4.6 Chapter 4 in Summary

Novel e�ects that arise for nonlinearities that interact with the quantum mechanical
shuttling of excitations with greater complexity than a simple cubic expression might
have were the subject of this Chapter. It was shown that such complex nonlinearities
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appear naturally through the feedback e�ect when one eliminates oscillations in
the standard manner for rotational polarons when the oscillation involved is in an
angular coordinate. The richer forms of the DNLSE that arose displayed saturation
e�ects. One such e�ect was that increase of nonlinearity caused self-trapping to
occur for intermediate values of nonlinearity but that further increases destroyed the
self-trapping. Another was that for certain values of the ratio of the saturation energy
to the transfer interaction, self-trapping never occurred, free states being always
stable. Yet another e�ect was the existence of both discontinuous and continuous
transitions. A detailed study of conditions for these e�ects to be manifested in terms
of relative values of the system parameters was presented and applied to several
systems including logarithmic oscillators.





Chapter 5
Static Energy Mismatch in the Nonlinear Dimer:
Nondegeneracy

Let us return in this Chapter to a DNLSE dimer with cubic nonlinearity, thus no longer
addressing the harmonic origin (or not) of an underlying motion but complicate the
system by considering nondegeneracy, i.e., a lack of energetic resonance between
the two sites. In other words, we ask here what happens if there is a static energy
mismatch in addition to the dynamic mismatch provided by the nonlinearity.

5.1 Evolution of the Nondegenerate Nonlinear Dimer

Given that we have understood, in Chapters 2 and 3, the primary behavior of the
degenerate nonlinear dimer stemming from the dynamic mismatch in energy, let us
compare how the time evolution of its nondegenerate counterpart is di�erent, and
richer, as a result of the static energy mismatch present in addition to the dynamic
mismatch.

The amplitude equations of motion, if site energies at the two dimer sites 1 and 2
are not equal to each other but ⇢1 and ⇢2, respectively, are

321

3C

= �8+22 � 8

⇣
⇢1 � j |21 |

2
⌘
21,

322

3C

= �8+21 � 8

⇣
⇢2 � j |22 |

2
⌘
22,

and lead, with the definition � = ⇢1 � ⇢2, to the nonlinear Bloch vector equations

3?

3C

= 2+@, (5.1a)

3@

3C

= �2+? � (j? � �)A, (5.1b)

3A

3C

= (j? � �)@. (5.1c)
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These are identical to the degenerate (nonlinear) counterparts except for the replace-
ment of j? in them by j?��, signifying that the site energy di�erence is, in general,
simply the sum of the dynamic and static contributions. Notice that the evolution
equations for the linear dimer with a static energy mismatch � are obtained from
Eqs. (5.1) by putting j = 0. Let us initially restrict the analysis to the localized initial
condition ?0 = 1.

The obvious questions to ask are how the self-trapping transition that we saw
in the degenerate nonlinear dimer is modified by the presence of the static energy
mismatch � in the nondegenerate dimer, and how the time dependence changes from
the simple cn-dn evolution we have examined in Chapter 2 for � = 0.

Before we explain the analytic procedures to arrive at the solutions, we display
graphically the answer to these two questions by making use of those solutions.
To answer the second question, how does the time dependence of the probability
di�erence in the nondegenerate dimer at and near the self-trapping transition compare
to that in the degenerate counterpart, we show Fig. 5.1. The left panel shows time

Fig. 5.1 Time dependence of the probability di�erence ? in the nondegenerate nonlinear dimer
at and near the self-trapping transition that appears similar (left panel) and quite dissimilar (right
panel) relative to the degenerate case. Displayed is the plot of ? versus g which is the time C in
units of 1/2+ . See text. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

evolution that is largely similar to what is seen in a degenerate nonlinear dimer
(see, e.g., Fig. 2.1), whereas the right panel depicts evolution that shows substantial
di�erences relative to the degenerate case. The static energy mismatch X = �/2+
equals 3/4 in the left panel. The solid line depicts the self-trapping transition in the
nondegenerate case. It corresponds to the nonlinearity ratio j/4+ = 1.623 while the
curves of ?(C) near, but not at, the transition are for j/4+ = 1.621 (dash-dotted)
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on the free side of the transition and j/4+ = 1.627 (dotted) on the trapped side,
respectively. To emphasize the qualitative similarity to the degenerate case (X = 0)
that we know from Chapter 2, we have included its evolution at the self-trapping
transition (dashed line). We see that ?(C) vanishes at long times. The saturation value
at the transition (solid line) of the nondegenerate dimer on the other hand, is not zero
but is appropriate to the specific value of the static energy mismatch. The qualitative
evolution (shape of the curve) is, however, the same. The time dependence on the
two sides of the transition looks a bit di�erent, i.e., ? is not symmetrical above and
below the transition line. Despite these slight e�ects of the static energy mismatch,
it is visually clear that the evolution is quite similar to that in the degenerate case.

By contrast, the right panel of Fig. 5.1 illustrates considerable dissimilarity of
the nondegenerate situation relative to the degenerate counterpart. The value of
X = �/2+ here happens to be �1/

p
27 and the nonlinearity j/4+ at the transition is

4/
p

27. The range of ? just above the transition and just below it are not very di�erent
from each other unlike in the case of the left panel where they are substantially
di�erent. What this means is that, in contrast to the case treated in the left panel, the
values the probability di�erence roams over do not change much from one side of
the transition to the other. The shapes of the curves seem markedly di�erent in the
free versus trapped regions in the right panel. The conclusion to be drawn is that the
variation of shape at the transition can be profoundly di�erent as a result of the static
energy mismatch.

Fig. 5.2 The dependence on the probability di�erence ? of the potentials * (?) corresponding,
respectively, to the left and right panels of Fig. 5.1. The solid line in either case depicts the transition
case. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.
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5.1.1 Potential Shapes and Physical Arguments to Gain Insight into the
Time Dependence

The reader will not be surprised that the procedure used to find analytic solutions
for the evolution in the nondegenerate dimer involves a ?-potential in a way similar
to Eq. (1.10) relevant to the degenerate case except that here the expression is more
complicated. In order to gain some insight into the reasons for the changes shown
in the left versus the right panels of Fig. 5.1, let us plot that potential * (?) as done
for the degenerate case of Fig. 1.2. The precise expression for* (?) may be found in
Eq. (5.4).

We depict the transition situation by a solid line and represent values of the
nonlinearity slightly di�erent from its critical (transition) value by the dashed and
dotted lines in each case. The initial value of the probability di�erence is ?0 = 1. We
start therefore at ? = 1 at the right end of each of the two panels in Fig. 1.2 and draw
a vertical line upwards to see where on the potential curve the system lies initially.
From the intersection with the transition curve in both panels we draw a horizontal
line (thick trace). It is tangential to the potential curve at the transition representing
the fact that it takes infinite time for the system to cross over the maximum of the
potential in the left panel and over its inflection region in the right panel. The fact
that the potential curve in Fig. 1.2 exhibits an extremum in the left panel but does not
in the right panel is responsible for the di�erence in the observed time dependence
shapes.

In a degenerate nonlinear dimer, the site energies are equal but as soon as one
of the two sites is occupied by the quantum particle, the nonlinearity causes the
energy at that site to be e�ectively lowered by the amount j (For simplicity we take
j to be positive throughout our analysis.) As intersite transfer begins, the decrease
in the probability of occupation that the transfer causes results in an increase in the
e�ective site energy at the initial site. The transfer also causes a decrease in the
e�ective energy of the other site as the probability of that site increases. The transfer
process decreases in this manner the e�ective di�erence in the site energies. If this
results in bringing the sites in resonance, the process can happen in reverse in that
the energy of the initially unoccupied site can become less than that of the other site.
Transfer that is overall resonant can then occur. This happens for su�ciently small
(but non-zero) values of j. If j assumes its critical value (4+), the process described
fails to bring the two sites in e�ective resonance, the energy of the initially occupied
site always remaining less than (or equal to) that of the initially unoccupied site.
This leads to the dynamic energy mismatch playing the same role as would a static
energy mismatch. That is how self-trapping occurs.

What is di�erent in a nondegenerate dimer? If � = ⇢1 � ⇢2 > 0, the energy of
the initially occupied site (always labeled as 1) starts out being larger than that of the
other site before occupation. The dynamic e�ect of the nonlinearity can bring the
two sites energetically closer. If the reverse is true, i.e., if the energy of the initially
occupied site starts out less, i.e., if � < 0, would the e�ect of the nonlinearity be to
pull the two sites energetically further apart and thus to make it impossible to have a
transition as one increases the nonlinearity? Superficial considerations might tend to
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make one think so but it is not to be forgotten that the complexities of the dynamics
as transfer occurs may invalidate this process. Fortunately, we have exact analytic
solutions with the help of which we can know for certain. We now develop them and
apply them to study systematically the e�ects of lack of resonance.

5.2 Specifics of the Weierstrass Calculation

The standard Weierstrass method of analysis starts with the solution of A in terms of
? in the Bloch vector Equation (5.1c) and substitution in (5.1b). This allows one to
derive a closed second order equation in ? as in the case of the degenerate dimer. Its
right hand side is a fourth-order polynomial in ? as in the degenerate case but with
non-vanishing terms for the zeroth and second power of ?:

3
2
?

3g
2
= �2W0 � 6W1? � 6W2?

2
� 2W3?

3
. (5.2)

The coe�cients are given by, with :0 = j/4+ for brevity,

W0 = X
⇣
?

2
0:0 � ?0X � A0

⌘
/2, (5.3a)

W1 =
⇣
�2?2

0:
2
0 + 2:0A0 + 1 + 2?0X:0 + X

2
⌘
/6, (5.3b)

W2 = � X:0/2, (5.3c)

W3 = :2
0 . (5.3d)

They are dependent, as they should be, on both the system parameters X and :0

and the initial conditions ?0 and A0.1 The standard ‘energy method’ well-known in
classical mechanics, involving a multiplication by 3?/3g, leads to the ?-potential
* (?) as in the case of the degenerate nonlinear dimer, Eq. (1.2):

* (?) = 4W0? + 6W1?
2
+ 4W2?

3
+ W3?

4
. (5.4)

In the use of the ‘energy method’ for the solution of di�erential equations, the
result ✓

3?

3g

◆2

=
✓
3?

3g

◆2

g=0
+* (?0) �* (?) = 5 (?) (5.5)

appears naturally. The second equality defines 5 (?) as the right side of the equation.
Observe that 3?/3g is nothing but @, the second component of the Bloch vector.
Equation (5.5) is integrated from the initial value ?0 to the ‘current’ value ? in two
segments,

1 They are determined by @0 as well, of course. But we know that only two of the components of
the Bloch vector can be independent quantities since the squares of all three must add up to 1.
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g =
π

?

?0

3?
0p

5 (?0)

=
π

?1

?0

3?
0p

5 (?0)

+

π
?

?1

3?
0p

5 (?0)

(5.6)

where ?1 satisfies 5 (?1) = 0. The “representative particle” that moves in the potential
* with ?(C) as its time-dependent “displacement”, reverses its direction at ? = ?1.
If we call the first term on the extreme right hand side g1, our problem is solved to
quadratures as

g � g1 =
π

?

?1

3?
0p

5 (?0)

. (5.7)

What one is really looking for, however, is some known special function that
can be identified in some form in the integral of the right hand side. This was easy
for the simple pendulum discussed in Chapter 1 where we recognized an integral
that had a similar form related to the expression for the inverse sinusoid. For the
physical pendulum, equivalently the degenerate nonlinear dimer, we did not look at
the quadrature form; instead the di�erential equation obeyed by the Jacobian elliptic
functions had the same aspect as that obeyed by the pendulum velocity or by the
probability di�erence, In the bacterial problem analyzed in Chapter 1, we got a taste
of the di�cult manipulations that are necessary to make in order to force known
di�erential equations into the form we encounter in the problem we solve.

The present problem straddles us with a still higher level of di�culty. Inspection
of Eq. ( 5.7) with (5.5) suggests the use of the Weierstrass function but not directly.
It is the reciprocal of a shifted form of it that does the trick.

If we define the quantities 62 and 63 in terms of the systems parameters and initial
conditions through

62 =3W2
1 � 4W0W2 � W3* (?1), (5.8a)

63 =W3
1 + W

2
0W3 � 2W0W1W2 + (W1W3 � W

2
2)* (?1), (5.8b)

and introduce the symbols * 0

1 = 3*/3? |?=?1 and * 00

1 = 3
2
*/3?

2
|?=?1 to denote

the potential derivatives, the theory of Weierstrass functions allows us to write the
solution of Eq. (5.5) explicitly and analytically as2

?(g) = ?1 �
6* 0

1

24®(g � g1; 62, 63) +*
00

1

. (5.9)

If you, the reader, are already well initiated in the properties of Weierstrass elliptic
functions, you will notice that the explicit result (5.9) connecting the time evolution
of the probability di�erence to the Weierstrass function may be equivalently said to
come from defining from ?(g) the quantity

f(?) = �
1
4

 
1

? � ?1

3*

3?

����
?=?1

+
1
6
3

2
*

d?2

����
?=?1

!
.

2 You may or may not find it significant that, although we have expressed the probability di�erence
in terms of the Weierstrass function ®, the latter has had to be shifted by a constant and put in the
denominator before one can identify it as being closely related to ? (g)!
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This is so because this transformation leads on the one hand to Eq. (5.7) taking the
form

g � g1 =
π

1

f

3f
0p

4f03 � 62f
0 � 63

, (5.10)

and on the other to our being able to identify f(g) as the Weierstrass function,

f(g) = ®(g � g1; 62, 63).

It is also known that f obeys the cubic equation

f
3
� 62f � 63 = (f � 41) (f � 42) (f � 43) = 0. (5.11)

The roots 48 of the equation (8 = 1, 2, 3) will be of particular calculational conve-
nience for us further into our analysis.

Thus, in summary, we see that the system parameters X = �/2+ and :0 = j/4+
of the nonlinear nondegenerate dimer, along with the initial conditions ?0 and A0,
determine3 the W0s in Eq. (5.3). The 6’s are known from Eq. (5.8). Substitution into
Eq. (5.9) gives us then the complete evolution of nondegenerate dimer. Notice that
the solution provided is now for arbitrary initial conditions involving any extent of
delocalization and phases.

The first instance of an analytic study of the nonlinear nondegenerate dimer that I
am aware of is by George Tsironis.4 Similar, but not identical, calculations emerged
independently, first in Andersen’s work that he reported in Bull. Am. Phys. Soc.
34, 967 (1989), see also (Andersen and Kenkre, 1993a,b) on spatially extended
nonlinear systems such as the trimer and the globally connected N-mer, as well as in
nonlinear trapping work performed by Ku� (Kenkre and Ku� , 1992). I recommend
to the reader two fine articles by Tsironis on this subject (Tsironis, 1993; Molina and
Tsironis, 1995). While they pursue the same system, the nondegenerate nonlinear
dimer, as the topic of the present Chapter, they emphasize di�erent matters relative
to what is described here and, in several cases, predate the matters touched upon
here. For general background on Weierstrass matters, I suggest to the reader a lucid
exposition by Brizard (2009) as well as the standard treatments by Abramowitz and
Stegun (1965) and Byrd and Friedman (1971).

3 As has been mentioned several times, the condition ?2
0 + @

2
0 + A

2
0 = 1 determines the third of the

Bloch vector values once the other two are specified and that we are considering only pure states
that allow us to use this identity.
4 He was the first of the Ph. D. students of mine to join me on the adventures whose retelling
constitutes this book. He undertook the study of the nondegenerate dimer at my suggestion to extend
the degenerate version that had been investigated in (Kenkre and Campbell, 1986; Kenkre et al.,
1987; Kenkre and Tsironis, 1987). George showed that the investigation called for the introduction
of Weierstrass elliptic functions into the analysis. We included his work in his dissertation but
George and I did not publish or exploit the analysis further at that time. He went on to make many
outstanding contributions to the study of nonlinear systems, and in 1996 was the recipient of the
Stephanos Pnevmatikos award.
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5.3 Analytic Results in terms of Jacobian Functions

The study of the nonlinear nondegenerate dimer presented in the foregoing sections
of this chapter has been based on exact expressions obtained for the time evolution
of the probability di�erence ?(C) = %1 (C) � %2 (C) for initial occupation of site 1
expressed as a function of the dimensionless time, g = 2+C. Treatment in terms
of Weierstrass functions has been available since Tsironis’ study in his dissertation
(Tsironis, 1993; Andersen and Kenkre, 1993b,a; Kenkre and Ku�, 1992; Molina and
Tsironis, 1995). However, Jacobian functions are more familiar than the former (and
with more intimate significance) to the physicist. It has been recognized (Scott, 1990;
Scott and Christiansen, 1990; Tsironis, 1993) and often stated, that an equivalent
Jacobian function analysis is possible but no expressions and derivations using them
have been o�ered, to the best of my knowledge. A special feature of the presentation
I provide in this Chapter is such an explicit analysis.5

5.3.1 Jacobian Results

Equation (5.9) can be used directly for displaying the probability di�erence and
studying its consequences analytically. However, Weierstrass functions happen to
be less familiar to the physicist than Jacobian elliptic functions which, as we have
seen in Chapter 1, can be looked upon as natural intermediates between oscillating
trigonometric functions and non-oscillating hyperbolic counterparts. Furthermore,
fewer software programs make the Weierstrass functions easily available to the user.6
For this reason, I have been wishing for a long time to have available the analytics of
this nonlinear system in terms of Jacobian functions. This we do here with the help
of one of several known results (Abramowitz and Stegun, 1965; Byrd and Friedman,
1971) that connect the two kinds of elliptic functions:

®(D; 62, 63) = 43 +
41 � 43

sn2
�
D

p
41 � 43, :1

� , (5.12)

The 4’s in Eq. (5.12) are the roots of the cubic equation (5.11) that we have referred
to in the earlier section.

Let us focus on the specific quantities ?(C), its period of oscillation, and its average
over a cycle. Direct substitution of the correspondence relation, Eq. (5.12), in Eq.

5 I am indebted to John Andersen for the close collaboration that has led to that analysis. His work
with me has included an investigation to stationary states using methods developed by Honglu Wu
in his Ph.D. dissertation (1990), a generalization of Eq. (5.2) to deal with arbitrary quantum phases
in the initial state, and the application of both these to the dynamics of Bose-Einstein condensates
(Andersen, Raghavan and Kenkre, Quantum Oscillations between weakly coupled Bose-Einstein
Condensates: Evolution in a Non-degenerate Double Well, 2021, preprint.)
6 For instance, at the time of this writing, the Weierstrass function can be called simply via a
command in Mathematica and Maple but not in Matlab, except, I am told, through the acquisition
of an add-on package.
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(5.9) yields the solution in terms of Jacobian functions. Explicitly,

?(g)

?1
=

1 + (0 � 1) sn2
⇥p
41 � 43 (g � g1) , :1

⇤
1 + 0 sn2

⇥p
41 � 43 (g � g1) , :1

⇤ , (5.13)

with the understanding that the elliptic modulus is given by

:
2
1 =

42 � 43

41 � 43
, (5.14)

and the coe�cients 0 and 1 are to be obtained through

0 =
43 + (*

00

1 /24)

41 � 43
, (5.15a)

1 =
(*

0

1/4)

?1 (41 � 43)
, (5.15b)

by calculating potential derivatives from Eq. (5.4).

The period ) of the solution is given by the simple expression

) =
2 (:1)
p
41 � 43

(5.16)

if 63 in Eq. (5.8) is positive and leads to corresponding simplifications. However, in
general, it is necessary to use a more involved procedure7 with the help of which we
arrive at the general expression for the period:

) =
2 (:2)

(4842
1 � 462)

1/4
. (5.17)

Here,

:
2
2 =

1
2

"
1 �

341

(1242
1 � 62)

1/2

#
, (5.18)

and it should be noticed that the full 62 has to be used, rather than simply the root 43

for the evaluation of the elliptic modulus. The quantity 41 in Eqs. (5.17) and (5.18)
is the largest real root of the three 48 .

In order to calculate h?i, the average of the probability di�erence over a cycle,
let us introduce the incomplete elliptic integral of the third kind8 via its definition

7 Relation (18.9.8,) column � < 0, in the notation of Abramowitz and Stegun (1965) corresponds
to this situation.
8 It is amusing that in a book I published as recently as a few months back (Kenkre, 2021), I wrote
that a (complete) elliptic integral of the third kind had appeared in my own research only once,
courtesy of Yiu-man Wong, one of the earliest of my Ph. D. students. I must now confess lightening
has struck again, this time while I worked with John Andersen. Beware of the rare beast! It can
chase you in your old age and appear unannounced, bounding after you even in its incomplete garb.
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⇧(=; D, :) =
π

D

0
3F

1
1 � = sn2 (F, :)

.

Manipulation of Eq. (5.13) before the evaluation of the average of a cycle, assisted
by the use of an identity such as (17.2.16) in Abramowitz and Stegun (1965)), then
yields directly a highly useful analytic expression of the average,

h?i

?1
=

h?(g)i

?1
= 1 �

1

0

✓
1 �

⇧(�0; V, :1)

V

◆
. (5.19)

The quantity V introduced here is not to be confused with any inverse temperature-
like entity you might encounter in your analysis but is simply proportional to the
period ) given by Eq, (5.17):

V = )
p
41 � 43

2
=
p

2(1242
1 � 62)

�1/4K(:2)

p
41 � 43

2
.

When the simpler expression for the period, Eq. (5.16), holds, i.e., for 63 > 0, the
quantity V is given by  (:1). In that simpler case, the average of the probability
di�erence can be expressed in terms of the more straightforward complete elliptic
integral of the third kind:

h?i

?1
= 1 �

1

0

✓
1 �

⇧(�0, :1)

K(:1)

◆
, (5.20)

the definition of the complete integral being

⇧(=, :) =
π 1

0
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1 � =C2

� p
(1 � C2) (1 � :2

C
2)

=
π

 (:)

0

3F

1 � = sn2 (F, :)
.

The general Jacobian form expression and the consequent results (5.13)-(5.20)
that we have obtained, including the relations via (incomplete and complete) elliptic
integrals of the third kind, are especially useful. Displayed probably for the first
time in this book, they allow one to perform systematic studies of the nondegenerate
dimer as will be discussed in the following sections.

5.3.2 Reduction to the Case of the Degenerate Dimer

Expressions for the probability di�erence in the case of the nonlinear nondegenerate
dimer, even when expressed in terms of Jacobian elliptic functions in the form of
(5.13), have an aspect that appears quite di�erent from the degenerate case. Equation
(5.13) involves the ratio of two expressions each containing as a term the square of
an sn function, whereas the degenerate case is simply a single cn (equivalently a dn)
function. It is instructive to understand how the simplification occurs when the static
energy mismatch is put equal to zero in the non degenerate dimer expressions. For
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the sake of simplicity, let us restrict the calculation to the localized initial condition.
Taking thus X = 0, ?1 = ?0 = 1, the potential* (?) is simplified to

* (?) = �(2:2
0 � 1)?2

+ :
2
0?

4
. (5.21)

The initial values of the potential and the first two derivatives are, respectively, 1�:2
0,

2, and 8:2
0 + 2. The roots 48 are calculated to be
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2
, (5.22b)

43 =
1
6
�
:

2
0

3
. (5.22c)

Their substitution into Eq. (5.14) leads to an expression for :1 that is not equal to
:0 = j/4+ , the expected result for the degenerate nonlinear dimer. This is so because
:1 is relevant to the sn function in Eq. (5.13) rather than to the cn or dn function
that describes the probability di�erence in the degenerate case. Note also that the
coe�cients 0, 1, given by Eq. (5.15) that determine the expression for ?(g) that is
provided in Eq. (5.13) simplifies in the degenerate case to

0 = 1/2 = :1,

yielding

?(g) =
1 � :1sn2

(D, :1)

1 + :1sn2 (D, :1)
. (5.23)

The Landen transformation detailed in Chapter 1 allows the reexpression of a
Jacobian elliptic function in terms of another with a di�erent elliptic modulus. In
particular,

dn(C, ^) =
dn2

(D, :) + : � 1

1 + : + dn2
(D, :)

=
1 � :sn2

(D, :)

1 + :sn2 (D, :)

with C = D(1 + :) and ^ = 2
p
:/(1 + :). Substitution turns the somewhat unfamiliar

form for ?(g) obtained in Eq. (5.23) into the familiar form

?(C) = dn
✓
jC

2
,

4+
j

◆

that we know well for the degenerate nonlinear dimer treated in Chapters 2 and 3.
This analysis in the limit X = 0 should reinforce confidence in the Jacobian elliptic
expressions that we have derived.

Before undertaking a study of the time evolution of the nondegenerate dimer with
the help of the expressions shown, it might be useful to detail the steps involved. The
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program thus follows these steps in succession:

1. From the system parameters � = ⇢1 � ⇢2, + and j, respectively the static
energy mismatch, the intersite transfer interaction and the nonlinearity, as well as
the initial conditions, for instance ?0 and A0, the two independent components of the
Bloch vector, obtain the coe�cients W through Eqs. (5.3).

2. Construct the ?-potential through Eq. (5.4) and obtain its value at ?(0) and,
with its help, calculate ?1 at which there is direction reversal in the motion of the
representative point by putting the right hand side of Eq. (5.5) equal to zero. Obtain
the time shift g1 as the definite integral that constitutes the first term on the extreme
right side of Eq. (5.6).

3. Calculate from Eq. (5.8) 62 and 63 from the W coe�cients evaluated in step 1
and the potential value at ? = ?1 evaluated in step 2.

The solution for the probability di�erence ?(g) is then given in Eq. (5.9) in terms
of the calculated quantities in steps 2 and 3 and from the values of the first two
?-derivatives of the potential * (?) at ? = ?1. This is the Weierstrass solution used
in the literature earlier. A fourth step that we provide in this book gives greater
analytical convenience than has been available in the literature. It may be had from
the Jacobian elliptic sn-function solution given here. For that additional step that
bypasses the Weierstrass function,

4. Find the roots 41 , 42 and 43 of Eq. (5.11) and obtain the probability di�erence
?(g) from Eq. (5.13), the elliptic modulus :1 being given by Eq. (5.14). Particularly
useful results on which we have based our analysis in the Chapter are then available
as Eqs. (5.19).

5.4 Systematic Study of the E�ect of Nondegeneracy

Let us use the analytic solutions we have obtained to focus on the observable h?i,
i.e., the average of the probability di�erence over a cycle to produce a plot against
the nonlinearity ratio j/4+ for di�erent values of the static energy mismatch. I
have come across a remark in the literature where analysis with the help of this
average observable has been implied to be in some sense inferior to the full time
dependence of ?(C). This misses the power of integrated observables that assist in
our understanding of the physics by probing the overall e�ect of the entire time
dependence rather than the separate value at each instant of time.9 The quantum
yield in exciton capture investigations in the field of sensitized luminescence is a
well-known example of such an integrated observable. See, e.g., (Kenkre, 2021) for
a discussion.

9 Our analysis also provides, easily, the computation of the instantaneous time evolution of any
quantity in the system, if desired. This should be clear from Fig. 5.1.
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In other words, what we are doing here is extending systematically the left plot of
Fig. 2.2 that was made for the degenerate nonlinear dimer to various cases of static
mismatch for the nondegenerate system, learning about features of the transition for
each case. We will also inspect the extension of the right side of the plot of Fig.
2.2 in one instance. Denoting the static mismatch by the ratio X = �/2+ , and taking
three values X = �3/4, 0, 0=3 + 3/4, we present Fig. 5.3.

In the first of these cases, X = �3/4, (dotted line), the e�ect of the static energy
mismatch adds directly to the e�ect of the nonlinearity. The nonlinear suppression
of the initially occupied site makes the energy mismatch always larger as the nonlin-
earity increases. We therefore encounter no transition: the average of the probability
di�erence always increases as the nonlinearity increases. The second case with X = 0,
(solid line) represents the degenerate dimer with no static mismatch. As we know,
the average ? is zero until j hits the critical value at which point the transition
occurs. In the third case, X = 3/4, (dashed line), the average value of ? is the same as

Fig. 5.3 Probability di�erence ? averaged over a cycle plotted in the main figure as a function of
the nonlinearity ratio j/4+ for three di�erent values of the static energy mismatch � = ⇢1 � ⇢2
expressed as a dimensionless ratio X = �/2+ : �3/4 (dotted), 0 (solid), and +3/4 (dashed). The
initial placement of the particle is always on site 1. This is the energetically lower site in the first
case (dotted line) and so the nonlinearity e�ectively increases the energy mismatch. No transition
occurs. In the opposite case when the initially occupied site is energetically higher (dashed line),
increase in nonlinearity tends to bring the sites to a resonance situation when the self-trapping
transition occurs as displayed. In the degenerate dimer case (solid line), the average value of ? is
zero for all nonlinearity values lower than the critical one, at which the self-trapping occurs. The
inset shows the frequency (reciprocal of period) of the probability di�erence time evolution as a
function of the nonlinearity for the corresponding cases. See text. Copyright Vasudev M Kenkre,
2021. All Rights Reserved.
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for X = �3/4 for vanishing nonlinearity: we know, for instance from Eq. (2.9), that
h?i for the linear dimer is insensitive to the sign of the site energy di�erence whose
square determines that average. Indeed, the value is X2

/(1+ X2
) which, for X = ±3/4

equals 0.36 where both the dotted and the dashed lines start at j = 0. While the
former rises always, encountering no transition in its journey to the value 1, the
latter has an interesting trek: it comes down with an increase in the nonlinearity,
undergoes the trapping transition, jumping thereby abruptly to a higher value and
then continues to the value 1 as a result of further increase in nonlinearity. The inset
shows the corresponding variation of the frequency of the probability di�erence
(reciprocal of the period of oscillation) for the corresponding three cases in the main
plot with the same line styles as in the main plot. In the two cases (dashed and solid
lines) in which there is a transition, the frequency drops (logarithmically) to zero
at the transition and increases without limit beyond the transition. In the case of no
transition (dotted line), the frequency increases for all nonlinearities, as expected.

The reader is reminded that the time dependence of the probability di�erence
?(C) at the transition, as well as for slightly lower and larger values of nonlinearity
relative to the critical value, corresponding to the dashed line in Fig. 5.3, is shown
explicitly in the respective three curves of the left panel of Fig. 5.1.

Having seen that the sign of the static energy mismatch has a clear influence
on the existence of the transition, we are ready to explore the e�ect of the static
mismatch more systematically.

5.4.1 Di�erence in Positive and Negative Static Mismatch in Site
Energy

The e�ect of positive energy mismatch ⇢1 > ⇢2 is examined by taking several
specific instances as shown in Fig. 5.4. All cases shown display change of average
? as the nonlinearity is varied, a transition at the corresponding critical values
represented by a jump upwards, and an eventual saturation to the value 1 for large
values of the nonlinearity signifying total self trapping. Curves (a), (b) and (c),
for which X = �/2+ takes the respective values 0.1 (solid), 0.25 (dotted) and 0.4
(space-dashed), show an increase for all increases in j whereas curves (d), (e), and
(f), for which X takes the respective values 0.6 (dotted-dashed), 0.8 (dashed), and
1.0 (space-dotted), display a decrease before the transition but an increase beyond it.
The complexity of the interaction between static and dynamic mismatch should be
clear from this lack of uniformity.

In order to inspect how the sign of the energy mismatch a�ects the transition, we
show Fig. 5.5 similarly to what we see in Fig. 5.3. The two solid lines represent the
variation of the average value of ? with changes in nonlinearity expressed as j/4+
with values X = �0.1, �0.19245 of the same magnitude but opposite sign as the two
dotted lines. The second value is actually precisely �1/

p
27 and emerges from the
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Fig. 5.4 Average of the probability di�erence ? plotted as a function of the nonlinearity ratio
j/4+ for six di�erent cases of static energy mismatch X/2+ as detailed in the text, all displaying a
self-trapping transition marked by abrupt upwards jumps. Three of the cases, (a), (b), and (c), show
an increase throughout while the other three decrease first and then increase as the nonlinearity is
increase. This stems from the complexity of the interaction of the static and dynamic mismatch.
See text. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

Weierstrass analysis as a significant number for this system. For any X values more
negative than that value, there are no transitions as we will see below.10

As explained earlier, the sign of the static mismatch is irrelevant to the value of
h?i at zero nonlinearity. This has the consequence that each solid-dotted pair starts
at the same place on the y-axis. As j increases, the negative X curves bend down
but the positive X counterparts go up. All four cases shown involve the self-trapping
transition but the negative mismatch cases have a much sharper appearance. We also
show the X = 0 case (thick solid line) that describes the nonlinear degenerate dimer,
for comparison. The negative static mismatch situations require a lower nonlinearity
value to cause the self-trapping transition.

This result is worth noting as it corrects a superficial expectation. We might
mistakenly assume that a negative mismatch, which means populating initially the
site which as a consequence of its static mismatch is lower in energy than the

10 The curious appearance of the numbers 4 and
p

27 in these systems should not be surprising once
one notices their connection to the square of 2 and the cube of 3. They appear in (Kenkre, 1989)
in the context of the rotational polarons study of (Kenkre et al., 1995; Wu and Kenkre, 1995), they
have appeared much earlier in Kenkre, Wu and Howard, Bull. Am. Phys. Soc. 33, K22-6 (1988),
additionally in Tsironis (1993), and can be found even in the 1986 dissertation of Tsironis.
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Fig. 5.5 Comparison of cases of static mismatch of positive and negative sign. Plotted is the
variation of the probability di�erence average h?i as a function of the nonlinearity for five values
of the static energy mismatch X: positive values +1/

p
27 and +0.1 shown by dotted lines, the value

0 representative of the degenerate dimer depicted by a thick solid line, and negative values �0.1
and �1/

p
27 shown by solid lines. The order mentioned is as we go from right to left or top to

bottom in the Figure. Negative energy mismatch shows sharper transitions. Note by the way that
the imperfection of numerical procedures makes the sharp peak appear to be at -0.3 (similarly in
Fig. 4.6 below) but in actuality it extends to -0.5 as analytic results further into this explanation
show. See text. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

unoccupied one, would necessarily increase the overall mismatch in the subsequent
evolution and therefore disallow a transition. The complex process of interaction
of the static and dynamic mismatches has the consequence that a small negative X
helps the nonlinearity (i.e., requires a lower value of j) in causing self-trapping to
occur. And yet, the leftmost solid curve in Fig. 5.5 is a demarcation curve. Notice the
supersharp nature of its transition. For more negative static energy mismatch, there
is no transition!

This disappearance of the transition is seen unequivocally in Fig. 5.6 where, in
addition to repeating the two negative X curves that are part of Fig. 5.5, we display
two more results for more negative X values. Both (dotted) variations of the average
of the probability di�erence show smooth variation, in other words, no transition.
Of those two, the one on the right (X = �0.25) displays a decrease followed by
an increase as the nonlinearity increases, whereas the one on the (extreme) left
(X = �0.40) increases always with j. Both curves manifest inflection in their shapes
which is an indicator of transition-like behavior. It is clear nevertheless that there is
no self-trapping.

As we increase the magnitude of the negative static energy mismatch further, it is
clear that we return to the case we started with the beginning of the study in Fig. 5.3



5.4 Systematic Study of the E�ect of Nondegeneracy 103

Fig. 5.6 Disappearance of the self-trapping transition as the static energy mismatch is made more
negative. Plotted are four cases of variation of the average of the probability di�erence over a cycle
as a function of the nonlinearity ratio j/4+ . The rightmost curve (X = �0.1 and the curve to its left
(X = �1/

p
27), both solid lines, exhibit the self-trapping transition, the latter being a demarcation

case. For negative X’s of larger magnitude the transition disappears as shown by the two dotted
curves on the left. They are for X = �0.25 and X = �0.40 as one moves to the left. See text.
Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

where we considered the static energy mismatch X = �3/4 and saw that there was
no transition.

In order to emphasize the disappearance of the self-trapping transition at the
value �1/

p
27 ⇡ 0.192 of the static energy mismatch X, we also show the variation

of the frequency of oscillations of the probability di�erence ? as a function of
the nonlinearity ratio j/4+ in Fig. 5.7. We display that variation along with two
companion cases on either side of the critical value. The solid line represents the
demarcation value �1/

p
27 while to its right we have the space-dotted line for

X = �0.18 that does have a transition (at a value of the nonlinearity ratio slightly
over 0.79 ) and to its left the dotted line for X = �0.20 that has no transition but only
a vestige of the transition shown by the frequency turning around from descent to
ascent at a value of the nonlinearity ratio a little over 0.75.

5.4.2 Graphical Perspective of Potential Plots

In order to understand some of these cases we have studied from the perspective of
potential plots, we provide Fig. 5.8 for four cases selected from the nine analyzed
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Fig. 5.7 Frequency of oscillations of the probability di�erence ? plotted as a function of the
nonlinearity ratio j/4+ to show the disappearance of the self-trapping transition as the static energy
mismatch is made more negative. Shown is the demarcation case (solid line) X = �1/

p
27 ⇡ 0.192

along with a negative static mismatch X = �0.18 of smaller magnitude for which there is a transition
on its right and a negative mismatch case of X = �0.20 of larger magnitude for which there is no
transition. See text. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

above. Each of the four panels corresponds to a value of the static energy mismatch
�/2+ as shown.

The transition curve in each panel is a solid line and the dashed and dotted lines
represent the same value of X as the solid line does but nonlinearities respectively
1.01 and 0.99 times the transition value. How free and self-trapped behavior follows
from the potential curves is clear from the plots.

All nine cases analyzed in this Chapter so far, inclusive therefore of the four cases
represented in Fig. 5.8, have the quantum particle starting on site 1 and thus on the
right-most point in each panel. The nature of the critical point example, the lower-
right panel, is di�erent from all others in that the horizontal line drawn from the
initial point is tangential to the potential curve at a point of inflection. It is tangential
to maxima portions in all the other panels. The lower minima are on the right for the
lower panels but on the left for the upper panels.

5.5 The Blend of Static and Dynamic Mismatch

To summarize how the interplay of static and dynamic mismatch occurs in the
nonlinear nondegenerate dimer and produces, or fails to produce, the self-trapping
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Fig. 5.8 Transition behavior studied with the help of potential curves, * (?) . Of the nine cases
denoted by filled circles in Fig. 5.10, four have been selected here to show the ?-dependence of the
plot of* (?) calculated from Eq. (5.4). In each, the self-trapping transition is shown as a solid line
and a dashed curve and a dotted curve represent, respectively, cases near but not at the transition.
The static energy mismatch X = (⇢1 � ⇢2)/2+ is positive in the upper panels and negative in
the lower panels, the respective values being displayed in the Figure. The abscissa in each plot is
the probability di�erence extending from -1 to +1. The lower right panel depicts the critical point.
Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

transition, we collect the various cases studied and present in the form of a single
3-dimensional plot. It depicts the frequency of oscillation 1/) calculated as the
reciprocal of the period of oscillation of ?(C) in Fig. 5.9. The construction of this
plot is made possible by Eq. (5.17) which is itself obtained from the analytical
expressions we have obtained in terms of Jacobian elliptic functions. The static
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Fig. 5.9 3-dimensional representation of the variation of 1/) , the reciprocal of the period of
oscillation of the probability di�erence ? (C) , in the nonlinear nondegenerate dimer for localized
initial placement on one of its two sites. The nonlinearity ratio j/4+ , and the non-degeneracy
ratio X = (⇢1 � ⇢2)/2+ , are respectively plotted on the x-axis and y-axis as shown. The sudden
logarithmic reduction in the oscillation frequency as one nears the self-trapping transition is clear
from the solid and dashed lines as is its unrestrained increase beyond the transition. The intersection
of the plot with the ’floor’, marked by the blue line, locates the line of the self-trapping transitions:
the period ) is infinite along the curve. This line ends in the critical point marked in red, beyond
which there is no self-trapping. The plot is obtained from our analytic expression for the period,
Eq. (5.17). See text. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

energy mismatch X = �/2+ is plotted on the y-axis, the dynamic mismatch j/4+ on
the x-axis, and the frequency of oscillation on the z-axis as shown.

Four important messages can be gathered from the plot. The first is shown by the
solid and dashed lines in the back towards the right of the figure where we notice the
sudden decrease of the frequency on approach to the self-trapping transition. The
solid line is for the degenerate dimer (X = 0) while the dashed line is the limit beyond
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which there is no self-trapping (X = �1/
p

27). This frequency variation connects
with that in the 2d plots of Fig. 5.7 and is the extension to the nondegenerate situation
of the mobility reduction plot given in (Kenkre and Campbell, 1986), shown in this
book as Fig. 2.3.

The second point of note is the unrestricted rise of the frequency beyond the
transition as the nonlinearity j increases beyond the critical value. It is indicative
of the phenomenon of motional narrowing in the line shape that would be seen in
an experiment such as neutron scattering. This is the nonresonant extension of Fig.
2.2 in this book, its essence being clear in Kenkre and Tsironis (1987). The third
interesting display is the blue line that marks the intersection of the plot with ’the
floor’, i.e., marks an infinite period ) . This is the transition curve and indicates the
value of nonlinearity required for the self-trapping transition to occur for any given
static energy mismatch �. The curve ends in the red dot (the fourth point of note)
which is the critical point11 with coordinates X = �1/

p
27 and j/4+ = 4/

p
27.

It is straightforward to derive the equation of the blue line and the coordinates of
the red dot from our theoretical development. The equation is

8X:3
2A

� (12X2
� 1):2

2A
+ 2X(3X2

� 5):2A � (X
2
+ 1)2 = 0, (5.24)

and is graphically displayed by itself in Fig. 5.10. Reorientation in the j-X space
with attention to the senses in which the variables increase along the respective axes
will help understand the connection between the blue line on the floor of Fig. 5.9
and the (black) line of Fig. 5.10.

It is appropriate at this point to show how Eq. (5.24) emerges as a relationship
between the nonlinearity and the nondegeneracy at the self-trapping transition. At
the occurrence of the transition, the period of oscillations becomes infinite which
means from the expression for the period presented in Eq. (5.19b) that either the
elliptic modulus becomes 1 or the denominator vanishes. While the second of these
alternatives means that 41 = 43, in the light of Eq. (5.14), the first of these alternatives
requires 41 = 42. These equality conditions on the roots of the cubic equation (5.11)
place restrictions on 62 and 63 appearing in (5.11). Imposing them in Eqs. (5.8) and
using the relations (5.3) between the W’s and the system parameters X and j leads,
finally, to (5.24) that predicts the critical point.

5.6 Behavior at the Critical Point

There are three interesting features of the behavior of the system at the critical point
marked by X = �1/

p
27, j2A/4+ = 4/

p
27. Two of them are striking. They are all

11 The equation for our blue line and the coordinates of the red dot have appeared first in (Tsironis,
1993); note that X is reversed in sign there with respect of our usage here, that Z there represents our
:0 here, and that the derivation is restricted as is our Eq. (5.24), to a localized initial condition. Our
analysis permits us to generalize Eq. (5.24) to arbitrary initial conditions. The striking dependence
of the critical line on initial conditions has been obtained in the present book and discussed in
Chapter 10 in the context of Bose-Einstein condensate tunneling.
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Fig. 5.10 Self-trapping properties of the nonlinear nondegenerate dimer for localized initial place-
ment on one of its two sites. Plotted is the relationship between the critical value of the nonlinearity
ratio, j2A/4+ to the nondegeneracy ratio X = (⇢1 � ⇢2)/2+ . The little filled circles represent
the nine situations studied in the previous plots in this Chapter, 4.1 through 4.7. As discovered by
Tsironis (1993), the point at the very left end of the curve, marked by an arrow, is special in that
no self-trapping transition is possible beyond it. The values of X and of the critical nonlinearity
ratio j2A/4+ that mark that special point are as shown in the curly brackets in the plot. See text.
Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

illustrated in Fig. 5.11 where the saturation value of the probability di�erence at the
self-trapping transition is plotted as a function of the static energy mismatch.

Initial occupation is of site 1, i.e., %1 (0) = 1, %2 = 0, and ?B is the value the
probability di�erence attains its saturation value at infinite time at the transition. The
energy of the initially occupied site is lower (by an amount 2+/

p
27); the eventual

occupation is more at the initially unoccupied site, the di�erence of %2 (C) � %1 (C) as
C ! 1 being 0.5. The two noteworthy features are that there is no transition beyond
the critical point as we have remarked in connection with Fig. 5.10, and that the
slope of ?B with respect to variations of the static energy mismatch X is infinite as
shown by the dashed line in Fig. 5.11. Analytic proofs can be given as follows.

The signature of the self-trapping transition at which ? becomes ?B , is that :1

in Eq. (5.13) should tend to 1. The complete elliptic integral of the first kind then
becomes infinite and so does the period ) which is proportional to it as Eq. (5.19b)
shows. The average value of ?, given by substituting :1 ! 1 in Eq. (5.19a), with 0
and 1 from Eqs. (5.15), is

?B = 1 �
6* 0

0

2441 +*
00

0

. (5.25)
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Fig. 5.11 Plot of ?B , the saturation value of the probability di�erence %1 (C) � %2 (C) , i.e., its limit
as C ! 1 as a function of the static energy mismatch X = (⇢1 � ⇢2)/2+ . Initially, %1 (0) = 1
and %2 (0) = 0. The two striking features here are that the ?B curve stops at the value -0.5 where
X = �1/

p
27, there being no transition beyond that point ; and that the slope of ?B at that point is

infinite. See text for the analytic proof of both these conclusions. Copyright Vasudev M Kenkre,
2021. All Rights Reserved.

where * 0

0 and * 00

0 denote, respectively, the first and second ?-derivatives of the
potential * (?) evaluated at ? = ?(0). Expanding relevant expressions in powers of
a small departure n around the critical point X = �1/

p
27, :0 = 4/

p
27, Eq. (5.24)

and other equations such as (5.8) and (5.4) yield, on the neglect of higher powers of
Y, the root 41 to be

41 ⇡
33/4

p
2

6

p
Y + O(Y

1
). (5.26)

On combining this result with Eq. (5.25) we find

?B ⇡ �
1
2
+

37/4

23/2

p
Y + O(Y

1
), (5.27a)

3?B

3Y

⇡
37/4

25/2

1
p
Y

+ O(Y
0
). (5.27b)

The passage Y ! 0 then allows us to recover the results, clear from Fig. 5.11,
that the limiting values of 3?B/3X and ?B at the critical point are infinity and -1/2,
respectively.
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Although most of the focus in the present Chapter so far has been to initial
conditions that are localized on one site, our develop can easily cover more general
initial conditions. We have performed such general studies that show how the critical
point (as well as the entire transition line given by Tsironis for localized initial
conditions) moves as the degree of localization is changed. Some of that will appear
in Chapter 10 in the context of the dynamics of Bose-Einstein condensates.

5.7 Stationary States

The analysis of stationary states of the nonlinear nondegenerate dimer is easy to
perform. Putting the time derivatives to zero in Eq. (4.6) and noticing that given that
@ equals 3?/3g, it must also vanish in the stationary state, we get the condition that
for a stationary state,

j

2+
=

X

?BB

�
1
ABB

=
X

?BB

⌥
1p

1 � ?2
BB

(5.28)

where BB denotes stationary states and ABB equals
p

1 � ?2
BB

given that @BB = 0 as
explained above. This links to Eq. (2.28) provided in Chapter 2 which treats the
degenerate case X = 0. It is easy to show that if nonlinearity vanishes, the stationary
state probability di�erence satisfies

�
2+

= X = ±
?BBp

1 � ?2
BB

. (5.29)

It is thus noteworthy that Eq. (5.28) describing stationary states in the nonresonant
nonlinear dimer is made up from additive contributions from the nonlinearity and
the nondegeneracy which each can be separately simply be put equal to zero to get
the respective result.

In order to determine which of these stationary states are stable and which not,
we follow the method used by Honglu Wu in an Appendix to his 1990 dissertation
for this system. Similarly to his analysis of the stability of stationary states of the
rotational polaronic dimer that we detailed in Chapter 4, he expanded the three Bloch
vector components around the stationary values as

? = ?BB + n? , @ = @BB + n@ = 0 + n@ , A = ABB + nA ,

and, linearizing the equations of motion in the variations n?,@,A , arrived at12

12 While not all steps of the calculation are visible in the dissertation, the prominent results have
been worked out and shown here in the book for completeness. My thanks to John Andersen for
help in the detailed verification of these results during the writing of the book.
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Fig. 5.12 Stationary states of the nonlinear nondegenerate dimer. Plots are of the probability
di�erence ?BB in the stationary states as the nonlinearity ratio j/2+ is varied. Comparison of the
solid (red) lines here to the pitchfork bifurcation of the resonant nonlinear dimer (X = 0) shown in
Fig. 2.9 makes clear the e�ects of non-resonance. The in-phase (near-horizontal) branch is stable.
Of the two out-of-phase branches, the lower is stable but only part of the upper branch is stable
(dotted line represents lack of stability). The two dashed lines in the upper half of the figure depict
the limits of the inequality that mark the stability criterion given in Eq. (5.33), see text. The static
energy mismatch X = �/2+ is 1/

p
27 in the main figure. The inset shows the same plot as in

the main figure for the static mismatch X having a negative value �1/2. The axes in the inset are
the same as in the main figure and we see all features qualitatively reproduced but upside down.
Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

3
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(5.30)

If any of the three eigenvalues of the matrix has a positive real part, the stationary
state is unstable. The eigenvalues _ are, explicitly,

�_[_
2
+ (?BB/ABB)

2
] � (1) [(1 + 2:0ABB)_ � 0] = 0. (5.31)
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One of the eigenvalues is zero. The other two are

_
2 = �(2:0?BB � X)

2
+

X

2:0?BB � X
. (5.32)

This then allows us to conclude that the stationary state is unstable if

X/2:0 < ?BB < (X
1/3

+ X)/2:0, for X > 0, (5.33a)

X/2:0 > ?BB > (X
1/3

+ X)/2:0, for X < 0 (5.33b)

The final results that Wu arrived at, which apparently have not been published in
the open literature, are displayed in Fig. 5.12 where the probability di�erence in the
stationary states is plotted as a function of j/2+ for two values of the static energy
mismatch. The main plot is for a positive value X = �/2+ = 1/

p
27 and the inset

(for the same axes and scales as in the main plot) for the negative value X = �1/2.
As the inset shows slight changes of values and an up-down inversion because of
change of sign, let us focus only on the main plot. The solid (red) lines represent
the stable stationary states while the dotted line represents the unstable situation.
The two lines marked ‘out-of-phase’ have ABB = �

p
1 � ?2

BB
while for those marked

‘in-phase’, ABB = +

p
1 � ?2

BB
. The dashed (blue) lines are the limits that mark the

region in which the stationary states are unstable as shown by Wu’s analysis.

5.8 Alternative Method for the Analysis of the Nonlinear Dimer

In ending this Chapter, let us examine an alternative method for the analysis of the
nondegenerate nonlinear dimer and some interesting generalizations thereof on the
basis of expressions that are non-local in time.

Equation (5.1) describes the nonlinear time evolution of the Bloch vector whose
components are ?, @ and A . Begin by recasting the evolution in matrix form as

3

3C

©≠
´
?

@

A

™Æ
¨
+

©≠
´

0 �2+ 0
2+ 0 �E(C)

0 E(C) 0

™Æ
¨
©≠
´
?

@

A

™Æ
¨
= 0. (5.34)

where the quantity E(C) that we have introduced equals the total energy mismatch
between the two sites of the nondegenerate nonlinear dimer as the di�erence

E(C) = j?(C) � �. (5.35)

Because our focus is on the probability di�erence ?, the first element of the Bloch
vector, let us derive a closed equation for it by first separating from the 3⇥ 3 evolution
in Eq. (5.34) the problem of the evolution of the 2 ⇥ 2 matrix that is the rest of the
Bloch problem. Solving that problem formally, and substituting the solution in the
evolution of ? alone will fulfill our task. Although problems of this ilk are often
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approached via Zwanzig projection operators (Zwanzig, 1961, 1964; Kenkre, 2021)
let us not use those operators here and extract from (5.34),

3

3C

✓
@(C)

A (C)

◆
+ E(C)

✓
0 �1
1 0

◆ ✓
@(C)

A (C)

◆
= 2+

✓
?(C)

0

◆
. (5.36)

Let us regard Eq. (5.36 as an inhomogeneous linear di�erential equation in which
the driving term is 2+ times the vector with the elements ?(C) and 0 as displayed,
and the homogeneous part is controlled by the matrix

Z (C) = E(C)

✓
0 �1
1 0

◆
.

Because it is a traceless 2⇥ 2 matrix, its exponentiation is easily performed by using
the result that, for such a matrix,

4
Z =

⇣
cos

p
⇡

⌘
� +

 
sin

p
⇡

p
⇡

!
Z

where � is the identity and ⇡ is the determinant of Z . The homogeneous part of the
problem is solved by ✓

@(C)

A (C)

◆
= 4�

Ø
C

0 3B Z (B)

✓
@(0)
A (0)

◆
, (5.37)

time ordering being assumed, as customary, in the exponentiation of the time-
dependent matrix. The Green function apparent in Eq. (5.37), the exponential of the
(time-ordered) integral of the Z matrix, is then applied to the driving term involving
?(C) and the result used in Eq. (5.36) to obtain a closed equation for ?(C) which
is, however, non-local in time. The case when @(0) and A (0) are non-vanishing is
left as an exercise for the reader. For the localized initial placement ?(0) = 1 and
@(0) = 0 = A (0), one arrives at the integrodi�erential equation

3?(C)

3C

+ 2
π

C

0
3BW(C, B)?(B) = 0. (5.38)

The memory W(C, B) is not a function of the di�erence C � B: a consequence of the
time dependence of E(C) in the Hamiltonian. It is given explicitly by

W(C, B) = 2+2 cos
π

C

B

3I E(I)

�
. (5.39)

Although this method does not appear to have been presented earlier, the final
result, Eq. (5.38) with (5.39), has been (Kenkre, 2000), the derivation route having
been through the application of Wu’s generalization (Wu and Kenkre, 1989) of
Zwanzig’s projection techniques (Zwanzig, 1961, 1964) to nonlinear situations. That
application of the diagonalizing projection operators will be one of the stand-alone
topics discussed in the Miscellaneous Chapter 11.
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There are five physically interesting cases of the integrodi�erential Eq. (5.38)
which might be worth mentioning passingly. Explicit solutions are easily derived for
three of them. The first of these is when j = 0 so this is not a nonlinear situation
at all and � is a constant so we are here analyzing a linear dimer with static energy
mismatch. The second is when � is time-dependent (with j = 0). This situation
is connected to the bursts in transfer (Agarwal and Harshawardhan, 1994) that had
been predicted in two-level atomic systems but mistaken in the literature for the
phenomenon of dynamic localization (Dunlap and Kenkre, 1986b), and treated with
the help of projection techniques in (Kenkre, 2000). The third is for a nonlinear
dimer (j non-vanishing) that is degenerate (� = 0) and this leads to the equations of
motion that are like those for a physical pendulum and to explicit solutions in terms
of Jacobian elliptic functions. It is thus possible in all these cases to provide explicit
solutions in terms of analytic functions. For the last two cases in which j and � are
both nonvanishing (� being time-dependent in the last of the examples) represent
the nonlinear nondegenerate dimer, the last of the examples being descriptive of an
external time-dependent field applied to it. Equations can be set up but solutions
are not straightforward to obtain. These matters will be taken up along with other
miscellaneous issues in Chapter 11.

5.9 Chapter 5 in Summary

The simultaneous e�ects of a static and a dynamic energy mismatch in the dimer
were studied in this Chapter, the former arising from nondegeneracy, i.e., from the
inequivalence of the site energies and the latter from nonlinearity. A systematic
study of the dynamics was carried out as well as of the stationary states of the
system. The quantities investigated for various amounts of the blend of static and
dynamic disorder were the average of the probability di�erence over a cycle and
the period of oscillation. The study was facilitated by new expressions presented
for the probability di�erence in terms of Jacobian rather than Weierstrass elliptic
functions. These expressions not only showed simply the passage to the dynamics of
the nonlinear degenerate dimer analytically but also made it possible to calculate the
saturation value of the probability di�erence and of the singular manner in which its
derivative blows up. Visual displays of the period confirmed critical behavior and
clarified how the self-trapping transition ceases to be for negative mismatch beyond
a certain point. Stationary state considerations were presented along the lines of the
development in Chapter 2 but enriched appropriately for the nondegenerate dimer.
At the end of the Chapter an alternative way of analyzing the time evolution of the
nondegenearate nonlinear dimer was also presented.



Chapter 6
Extended Systems with Global Interactions, and
Nonlinear Trapping

Consider a benzene molecule. It is often looked upon as having a planar ring structure.
An excitation, electronic or vibrational for instance, may be imagined as moving
among the atoms of the molecule. Analysis appropriate to motion of a quasiparticle
via nearest-neighbor interactions may be one way of studying such as a system. It
would be particularly appropriate if the transfer interactions are of short range so that
an atom may be considered to be in communication primarily with adjacent atoms.
However, if the transfer interactions are of long range, the situation would be more
complicated. Yet in the other extreme limit, the interactions may be considered to be
equal between any two of the atoms constituting the system so that we have what is
called an #-mer rather than a ring. Analysis may then be simplified because of the
global nature of the interactions.

A di�erent physical example of such a situation is provided by hydrogen in metals,
a subject of great technological importance (Sköld, 1978; Brown and Kenkre, 1987).
The moving particles are now the hydrogen ions that get trapped at the interstices
near impurities such as oxygen. They are light enough that quantum e�ects may
be discernible. In both the cases mentioned, benzene-like systems and hydrogen in
metals, if the moving particle interacts strongly with vibrations of the environment
it may be describable by the DNLSE. Let us therefore investigate in the following,
quasiparticle motion and self-trapping via a discrete nonlinear Schrödinger equation
by considering the limit of equal transfer interaction between any pair in a group of
# sites.

Returning to Eq. (1.1), we will take its form which, rather than Eq. (1.2), is one
obtained for +<= = + for all < and = in the system, thus starting with

8

32<

3C

= +

 ’
<

0

2<0 � 2<

!
� j |2< |

2
2<, (6.1)

where the sum over <0 has been kept unrestricted over all sites in the system. Such
systems have been occasionally referred to as (globally interacting) #-mers. In keep-
ing with the underlying theme of the book (and of the spirit of our researches into this
otherwise di�cult and extensive field), the idea here is to seek, whenever possible,
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systems which can be approachable analytically, taking the help of numerical or
approximate studies only when essential to do so.1

6.1 Trimers and T-mers with any Pair of Sites in Equal
Communication

Let us begin by converting Eq. (6.1) for our =-site system into the corresponding
equation for the elements of the density matrix d<=:

3d<=

3C

= �8+

’
B

(dB= � d<B) + 8j (d<< � d==) d<=, (6.2)

and make the decision, in the spirit of our intention to study only analytically
reachable conclusions here, to restrict our study to initial conditions for which the
particle is either localized on a single site, partially localized over a group of identical
sites (<� < # in number), or partially localized over these sites and over a di�erent
group of identical sites (<⌫ = # � <� in number). The idea here is to achieve
high symmetry in the evolution by high symmetry in the initial conditions. Thus, the
initial conditions on the amplitudes 2< are taken to be exactly the same within each
of two groups � and ⌫, and thus to be given by 2< (0) = |2�0 | and 2< (0) = |2⌫0 |,
respectively, with two possibilities on their interrelation: |2�0 | = ±|2⌫0 |. We are
initially in our analysis considering, thus, only “real conditions” in the language of
Chapter 3. The probability of occupation within the � group is d�� and that within
the ⌫ group is d⌫⌫ = 1 � d��.

Following Andersen and Kenkre (1993b,a), let us define ?, @ and A via

? =<�d�� � <⌫d⌫⌫, (6.3a)

@ = 8
p
<�<⌫ (d�⌫ � d⌫�) , (6.3b)

A =
p
<�<⌫ (d�⌫ + d⌫�) , (6.3c)

and notice that they satisfy ?2
+ @

2
+ A

2 = 1 just as do the components of the Bloch
vector in a dimer. The time evolution of these three Bloch components obeys

1 In the late 1980’s I suggested these investigations to John Andersen who undertook them with
me with immediate success as will be described in the first part of this Chapter. John had been a
Ph. D. student of mine who had acquired expertise in standard polaron theory for his dissertation,
working on the resolution of the long-standing naphthalene puzzle (Pope and Swenberg, 1982,
1999; Andersen et al., 1983; Kenkre et al., 1989) and discovered many noteworthy results in this
# -mer scenario. While my interest in the # -mer behavior was stimulated by the motion of trapped
hydrogen ions in metal hydrides, this subject had been started already earlier by Eilbeck et al.
(1985) motivated by excitation motion in a molecule like methane (or benzene) as mentioned at
the beginning of this Chapter. Our studies proceeded, independently, with di�erent focus as will be
seen below.
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3?

3C

= 2+
p
<�<⌫ @, (6.4a)
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�
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The initial conditions we are studying may be expressed in terms of the initial values
?0, @0 and A0 of these Bloch-like components through the relations

d��(0) = |2�0 |
2 = 22

�0 =
1 + ?0

2<�
, (6.5a)

d⌫⌫ (0) = |2⌫0 |
2 = 22

⌫0 =
1 � ?0

2<⌫
, (6.5b)

d�⌫ (0) = d⌫�(0) = 2�02⌫0 = B

s
(1 � ?0)

2

4<�<⌫
, (6.5c)

with the restriction that B = 0 (localized), B = 1 (delocalized in-phase) or B = �1
(delocalized out-of-phase), or more simply as

?0 = 2<�22
�0 � 1, (6.6a)

@0 = 0, (6.6b)

A0 = B
q

1 � ?2
0. (6.6c)

By introducing the dimensionless quantities D = #+C, [ = (<� � <⌫)/# =
�1+2<�/# and : 00 = j/

⇥
#

2
+ (1 � [

2
)
⇤
, Andersen and Kenkre (1993b,a) were able

to obtain the closed second-order equation for ?(D),

3
2
?

3D
2
= �2W00 � 6W01? � 6W02?

2
� 2W03?

3
, (6.7)

the coe�cients W0 being given by
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⇥
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⇤
,

(6.8b)

2W02 = � [:
0

0 (2:
0

0 + 1), (6.8c)

W
0

3 =: 020 . (6.8d)

The reason primes have been placed on :0 and for that reason on the W’s is that
we will be rescaling them in the next section to establish a useful link with the
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nonlinear nondegenerate dimer. They appear in Andersen and Kenkre (1993b,a)
without primes and precisely as defined here.

Fig. 6.1 Comparison of the self-trapping transitions exhibited by globally interacting # -mers
(particularly dimers, trimers and tetramers) obeying the DNLSE for an initially localized condition
(?0 = 1 and @0 = 0 = A0). The plots are taken directly from (Andersen and Kenkre, 1993b) but a
prime has been placed on :0 appropriate to the scaling discussed in the text. The average of ? (C)
over a cycle is plotted as a function of :00, a quantity which, except for proportionality constants,
measures the nonlinearity. Systems treated are the two simplest # -mers, the trimer and the tetramer,
along with the resonant dimer for comparison. Both negative and positive values of :00 are included.
See text for discussion. Modified with permission from figs. 3 and 4 of Ref. (Andersen and Kenkre,
1993b); copyright (1993) by American Physical Society.

Andersen and Kenkre (1993b,a) employed Weierstrass functions to find solutions
to Eq. (6.7). From the detailed analysis of the behavior of trimer, tetramer and
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generally #-mer systems that they published in those papers, let us display Figs. 3
and 4 of (Andersen and Kenkre, 1993b) as our combined Fig. 6.1 here.

Perhaps the most striking of the results in Fig. 6.1 is that the dimer possesses an
extended : 00 region over which the average over a cycle of the probability di�erence
is constant at 0 whereas that is not true for the trimer and the tetramer.2

Although this #-mer analysis leading to Fig. 6.1 as well as numerous other results
discussed in the original publications in the 1990’s was carried out independently of
any connection to the nonlinear nondegenerate dimer described in Chapter 4, I have
always felt that there must be a close connection, at least conceptual, between the two.
Part of the reason for this belief is that the symmetry that we imposed on the initial
conditions separated the site-space into two groups which are dissimilar but in all
other respects quite like the sites of a nonlinear nondegenerate dimer. Furthermore,
inspection of Fig. 6.1a relative to Fig. 5.5 of Chapter 5 reveals an impressive kinship
of the flat versus spiked transition behavior as does the inspection of Fig. 6.1b relative
to Fig. 5.4 of Chapter 5 which brings out the di�erence in the behavior of the curves
before and after the self-trapping transition. This led John Andersen and me in the
very recent investigation we undertook for the purposes of this book to seek out an
explicit transformation that might connect our #-mer analysis of the 1990’s to the
nonlinear nondegenerate study we reported in Chapter 5. We succeeded in the study,
linking thereby our investigations with the Weierstrass investigations initiated in the
Tsironis 1988 dissertation. We present the explicit transformation in the next Section
and work out on its basis a few noteworthy results.

6.2 Rescaling to Connect the T-mer to the Nonlinear
Nondegenerate Dimer

The equations of motion for the #-mer developed in Andersen and Kenkre (1993b)
chose the natural dimensionless time D = #+C and used the symbol :0, which
we have rewritten here with a prime, i.e., as : 00, to denote the nonlinearity in the
combination

:
0

0 =
j

#
2
+ (1 � [2)

. (6.9)

In order to establish a relation that will allow us to use it as a conduit to travel
between the N-mer and the nonlinear nondegenerate dimer, let us now return to
Eqs. (6.4) and rewrite them in terms of new parameters + 0, j0 and �0 that explicitly
depend on the condition we imposed via the choice of dissimilar groups of sites
numbering <� and <⌫ respectively, with identical evolution at each site within the

2 Graphical displays similar to those in Fig. 6.1 have appeared several times in the literature, some
with citation to (Andersen and Kenkre, 1993b) as in the BEC tunneling analysis of Raghavan
et al. (1999c) and and some without citation as in the paper by Molina (1999). To whichever class
they belong, they all support our earlier findings and strengthen our faith in their correctness and
relevance. I have recently come across some well thought-out analysis on this subject presented by
Tsironis (2011). I particularly encourage the reader to consult it as it emphasizes additional features.
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group.
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We find that the resulting evolution equations governing the N-mer,

3?

3C

= 2+ 0
@, (6.11a)

3@
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= �2+ 0
? � (j

0
? � �0

)A, (6.11b)

3A

3C

= (j
0
? � �0

)@, (6.11c)

are completely identical to Eqs. (5.1) that govern the nonlinear nondegenerate dimer,
except for the primes in (6.11)!

This isomorphism allows one to deduce, in a nontrivial way as we shall show
below, the N-mer dynamics from the known dynamics of the nonlinear nondegenerate
dimer examined in Chapter 5.

Inspection of Eq. (6.10) shows transparently that the nondegeneracy �0 arises
directly from the di�erence <� � <⌫ and would vanish if there were no assumed
separation into unequal � and ⌫ groups of sites. It also shows, the (perhaps unex-
pected) contribution to the nondegeneracy that comes from the nonlinearity j in the
system.

Dividing by 2+ 0 all the entries in Eqs. (6.11), defining g = 2+ 0
C, :0 = j0/4+ 0 and

particularly X = �0
/2+ which is to be identified as the dimensionless nondegeneracy

in the e�ective dimer, we can rewrite the evolution as proceeding from

3?

3g

= @, (6.12a)

3@

3g

= �? � (2:0? � X)A, (6.12b)

3A

3g

= (2:0? � X)@. (6.12c)

The :0 that appears (without a prime) in Eq. (6.12) is now found to be

:0 =
j

#
2
+ (1 � [2)3/2

. (6.13)

with a change in the exponent of (1 � [
2
) from 1 to 3/2, relative to Eq. (6.9).

Particularly important to note is that the key quantity in the e�ective nondegenerate
nonlinear dimer is X and is given by
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X = V + 2:0

 
Vp

1 + V2

!
= [

 
2:0 +

1p
1 � [2

!
. (6.14)

The first of these expressions involves V = [/
p

1 � [2, a quantity that is purely
determined by the di�erence of <� and <⌫. Its appearance makes clear how the
e�ective nondegeneracy arises from the separation of sites we have imposed through
the inequality of <� and <⌫. The second expresses the e�ective nondegeneracy in
terms of the quantity [ introduced by Andersen and Kenkre (1993b),

[ =
<� � <⌫

#

=
2<�
#

� 1. (6.15)

Fig. 6.2 Comparison similar to that shown in Fig. 6.1 but for partially delocalized initial conditions

with ?0 = 7/9 and @0 = 0. The left panel (a) is for in-phase conditions A0 =
q

1 � ?2
0 while the

right panel (b) is for out-of-phase conditions A0 = �

q
1 � ?2

0 . Modified with permission from figs.
5 and 8 of Ref. (Andersen and Kenkre, 1993b); copyright (1993) by American Physical Society.

We have thus constructed a bridge to port over results collected over the years for
the nondegenerate dimer and the #-mer from one side to the other.

As the first example of the new rescaled equations of motion we reconstruct with
their help two transition plots of the dependence of the average probability di�erence
in the #-mers for delocalized (real) initial conditions that had been presented in
Andersen and Kenkre (1993b) as Figs. 5 and 8, here blended as (a) and (b) in Fig.
6.2 for in-phase (B = 1) and out-of-phase (B = �1) cases respectively. The similarity
between the plot produced here in this book from the nonlinear nondegenerate dimer
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expressions and the one given in the publication almost three decades ago (without
using the connection) is noteworthy. The only slight di�erence is a relative shift in
the locations of the sharp dips in the left panel of Fig. 6.4. The source of this shift is
the di�erence in the exponents in the :0 expressions (6.9) and (6.13).

Fig. 6.3 A consequence of the bridge we have established to port over results from the nonlinear
nondegenerate dimer to N-mers and vice-versa. The main plot has the stationary state probability
di�erence ?BB plotted on the G-axis and the nonlinearity parameter :0 = j0/4+ 0 plotted on the
H-axis as calculated by putting the time derivatives to zero in Eq. (6.12). It can also be considered
to be obtained by a rotation of the nonlinear nondegenerate plot of Fig. 5.12 concomitant with Eq.
(6.14). The inset is a miniature representation of the precise corresponding plot from fig. 1 of Ref.
(Andersen and Kenkre, 1993a). Solid (dotted or dashed) lines represent out-of-phase (in-phase)
cases. The identity of the main plot and the inset proves beyond doubt, graphically, the validity of
our prescription (6.14) that connects the two systems, the nonresonant dimer and the N-mer. Inset
modified with permission from fig. 1 of Ref. (Andersen and Kenkre, 1993a); copyright (1993) by
American Physical Society. Main figure, copyright Vasudev M Kenkre, 2021. All rights reserved.

As additional examples of the use of the bridge that Eq. (6.14) represents across
the #-mers and the nonlinear nondegenerate dimer, we show Figs. 6.3 and 6.4. In the
first of these, the stationary state probability plot shown in Chapter 5 for the nonlinear
nondegenerate dimer yields the stationary state plot for the #-mers through a simple
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rotation. The caption explains further detail. Trimers and tetramers are both shown
in the plots.

Fig. 6.4 Stationary states of N-mers shown to emphasize another example of the bridge we have
established to port over results from the nonlinear nondegenerate dimer to N-mers and vice-versa.
Solid (dashed) lines represent out-of-phase (in-phase) cases and red (blue) lines correspond to the
trimer (tetramer). A comparison of the plot to Fig. 5.12 makes amply clear the validity of the
prescription we have provided in Eq. (6.14) to establish the connection between the two systems.
Copyright Vasudev M Kenkre, 2021. All rights reserved.

As our final application of our bridge relation between #-mers and the nonlin-
ear nondegenerate dimer we provide Fig. 6.5. It results from using the relation in
conjunction with the fascinating finding by Tsironis (1993) that no self-trapping
transitions occur in the nonlinear nondegenerate dimer beyond a critical point in the
X-:0 plane3. The relevant question to ask is what may be expected for the #-mers as

3 The plane is displayed clearly in Fig. 5.10. It can be regarded also as the floor of the Fig. 5.9 we
have constructed from our theoretical analysis.
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a corresponding result. The focus here is on the feature of Eq. (6.14) that it o�ers the
e�ective nondegeneracy X as arising from a superposition of the contribution of the
nonlinearity with that of V or [ which stems merely from the division of the #-mer
into site groups for symmetry.

Fig. 6.5 Graphical depiction of the critical point and critical line situation in # -mers calculated
via the the application of the bridge relation, Eq. (6.14), to the corresponding situation in the
nonlinear nondegenerate dimer. The critical nonlinearity for self-trapping in the # -mer is shown
as a function of the lattice asymmetry as solid and dotted black lines. Self-trapping stops along the
dotted curves at their respective critical points, as it does in the nonlinear nondegenerate dimer (see
Tsironis (1993)). The dashed red curve for �1/2  [ < 1 from (Andersen and Kenkre, 1993a) and
the red circles from Molina (1999) follow the solid black curve. These earlier results provide clear
additional validation of the bridge that we have presented. Although not apparent for all curves,
the vertical asymptotes are at [ = ±1. See text. Copyright Vasudev M Kenkre, 2021. All rights
reserved.

The answer is that the rotation implied by the mixing of the two contributions
produces Fig. 6.5 for the #-mers with its multiple branches denoted by dotted
lines in addition to the solid line (see plot). The dotted lines start at critical points
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marked by arrows pointing to filled black circles whose coordinates are also shown
in the Figure. Of particular interest are the previously reported results we show in
red on the black solid trace in Fig. 6.5. Note in the plot the following. When the
two symmetrically equivalent nondegenerate nonlinear dimer critical points lying

at (X, :2A ) =
⇣

⌥1
p

27
,

±4
p

27

⌘
are used in the relation (6.14), the resultant locations of

the #-mer critical points are found to be at symmetrically inequivalent positions
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of the solid

curve.
The critical nonlinearity for localized initial conditions (?(0) = 1) has been found

for #-mers for specific cases of [. The results of Andersen and Kenkre (1993b) were
for the continuous range �1/2  [ < 1, while those given by Molina (1999) were for
<� = 1 (equivalently, [ = (2/[) � 1) with # � 3. These two sets of results overlap
only at [ = �1/3 and [ = �1/2. Modifying these earlier results so that they have
the same scaling as the present :0, displayed in the plot as :2A , those from Andersen
and Kenkre (1993b) are plotted in as a dashed red line, while those from Molina
(1999) are shown as filled red circles. What is important to realize is that the bridge
condition we have provided here has allowed us to arrive, with hardly any e�ort, at
the entire self-trapping phase space for all N-mers.4 It has also allowed us to unify
the results of earlier investigations, obtained by di�erent authors and over a span of
half a dozen years, into a single context.

6.3 Additional Results from Considerations of T-mers

There is an interesting extension of the usefulness of the results obtained from the
globally interacting N-mers with symmetric conditions that Andersen and Kenkre
(1993b) argued in their analysis. Given that we are assured that the occupation of any
of the � (or ⌫) sites is as that of another of the group for all time, the intersite matrix
element connecting any of these sites to each other is of no importance and can be
set equal to zero. It follows then that the solution obtained for a trimer ring is also
the solution for a trimer chain by which we mean a 3-site system without periodic
boundary conditions, subject to initial conditions in which the two end sites have
equal amplitudes. In exactly the same way, a tetramer reduces to a 2-dimensional
star shape or to a 4-site ring with alternating � and ⌫ sites. This extension of the
results to systems with lower symmetry but for initial conditions that are symmetric
can be understood from Fig. 6.6.

4 We have shown the analysis here only for localized initial conditions.
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Fig. 6.6 Extension of the applicability of results obtained for N-mers by breaking bonds connecting
equivalent sites. The upper three systems in the Figure are as analyzed in the text and the corre-
sponding lower three are extended versions. In the upper row, white space represents bonds through
which excitation flow is vanishing as a result of symmetry, and the corresponding bonds are simply
disconnected (broken) in the lower row. We thus get an open trimer chain in (a), an open star in (b)
and an alternating site type tetramer in (c). Modified with permission from fig. 2 of Ref. (Andersen
and Kenkre, 1993b); copyright (1993) by American Physical Society.

6.4 Nonlinear Trapping from a Linear Lattice Antenna

In this and subsequent sections of this Chapter, we now turn to a di�erent example
of complex but analytically soluble systems approachable via the DNLSE and char-
acterized by global interactions. They deal with the excitation capture problem in
such globally interacting systems, analyzed by Kenkre and Ku� (1992).

The reaction di�usion problem of the motion (di�usion) of a quasiparticle in some
environment followed by its arrival at a special location where it undergoes some
characteristic process (reaction) is ubiquitous in physics. Sensitized luminescence,
mutual anhhilation, chemical reactions are among phenomena whose study is linked
to such reaction di�usion scenarios. An enormous literature exists on the subject and
the interested reader might wish to learn about techniques, problems and subtleties
from recent discussions in chapters 11 and 12 of a book I have recently published
(Kenkre, 2021). Here let us focus on the analysis carried out by Kenkre and Ku�
(1992) with a photosynthetic antenna and capturing center in mind.

Let us assume that the excitation whose trapping we study, moves quantum
mechanically on a ring (chain with periodic boundary conditions) of sites <, =, etc.,
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via nearest neighbor interactions + and is captured at a site that has the nonlinear
behavior characteristic of the DNLSE arising, for example, from strong interactions
with vibrations. It is then natural to think of three separate models. In the first, one
of the sites in the chain is itself the capturing site and is inherently nonlinear in its
behavior. This could arise from the energy of the excitation being lowered by an
amount proportional to the probability of occupation of that site (indexed below by
the label 0) by the excitation, leading to the evolution of the amplitude 2< at the <th
site as

8

32<

3C

= + (2<+1 + 2<�1) � X<,0j |20 |
2
20. (6.16)

A di�erent model would correspond to the situation in which the capturing site is
indexed by \ and a particular chain site, for instance the one at < = 0, communicates
with that capturing site via a matrix element, . The capturing site is here considered
external to the chain. The evolution would then obey

8

32<

3C

= + (2<+1 + 2<�1) + X<,0,2\ (6.17)

in what may be called the antenna part of the system, with

8

32\

3C

= ,20 � j |2\ |
2
2\ (6.18)

describing the evolution of the amplitude of the capturing center. It is explicit here
that the capturing site is outside the antenna.

A third model could involve global capture from all antenna sites. It is character-
ized by

8

32<

3C

= + (2<+1 + 2<�1) +,2\ , (6.19a)

8

32\

3C

= ,
’
<

2< � j |2\ |
2
2\ , (6.19b)

and is the one of interest to us in the present discussion published by Kenkre
and Ku� (1992). Let us examine first the method of investigation, obtain with its
help an analytic solution for arbitrary initial conditions and then study two issues in
particular: the stationary states of the system, and the exact time-dependent solutions
for the particular case of initial occupation of the antenna.

6.4.1 Arbitrary Initial Conditions, Analytic Solution

One can visualize our system as consisting of # +1 sites with # of them constituting
a ring that surrounds a central trap site external to the ring. See Fig. 6.7. Intersite
interactions are nearest neighbor within the antenna ring. The central trap is coupled
to all the antenna sites equally. In order to solve the governing equations (6.19), let
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Fig. 6.7 Schematic depiction of the capture model showing the antenna which is the ring of sites
surrounding the centrally placed reaction center whose energy is lowered by an amount proportional
to j when it is occupied by the excitation. Excitation moves in the antenna sites through nearest
neighbor matrix elements + and communicates with the reaction center via matrix elements , .
See text. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

us introduce the Bloch state amplitudes

2
: =

1
p
#

#’
<=1,2,...

2<4
8:< (6.20)

via a simple discrete Fourier transform of the antenna site amplitudes and remember
that they can always be inverted into the site amplitudes via

2< =
1
p
#

2c (#�1)/#’
<=0,2c/# ,...

2
:

4
�8:<

. (6.21)

In order to find the time dependence of the Bloch amplitudes in the antenna it is
straightforward to use Eq. (6.19a). We find the Bloch amplitudes obeying

32
:

3C

= �28+ cos :2: +
p
#,X: , 02\ . (6.22)

The antenna state with : = 0 and the capturing state \ form a closed system of two
nonlinear equations



6.4 Nonlinear Trapping from a Linear Lattice Antenna 129

32
0

3C

= �28+20
� 8

p
#,2\ , (6.23a)

32\

3C

= �8
p
#,2

0
+ 8j |2\ |

2
2\ . (6.23b)

The remaining Fourier components 2: (C) can be found straightforwardly from the
linear homogeneous equation (6.22).

While closely related to the nonlinear nondegenerate dimer that we have analyzed
in Chapter 5 and have linked to the N-mer in the preceding sections of the present
chapter, what we have here for the capture system is slightly di�erent. Only one of the
two sites, \, has nonlinearity j associated with it: it alone undergoes energy lowering
when occupied by the excitation, the antenna obviously does not. The matrix element
that connects the two sites is

p
#, , which we will call from now on F for simplicity,

and the nondegeneracy is marked by 2+ .
Let us now rewrite the Fourier mode of the antenna that communicates with the

reaction center associating it with the letter B so that 2B = 2
0, define generally the

density matrix elements d`a = 2`2⇤a with the subscripts ` and a taking on values B
and \, and introduce the four Bloch-like quantities

% =d\ \ , (6.24a)

& =8 (d\B � dB\ ) , (6.24b)

' = (d\B + dB\ ) , (6.24c)

( =dBB . (6.24d)

Three of these, %,&, ', have the nature of the components of the Bloch vector
that we have encountered in various calculations, ( represents the antenna. They
obey the evolution equations

3%

3C

= �
3(

3C

= F&, (6.25a)

3&

3C

= �2F(% � () � 2+' � j%', (6.25b)

3'

3C

= 2+& + j%&. (6.25c)

It is easy to see that this system of equations has three integrals of motion,

�1 = % + (, (6.26a)

�2 = ' �
j

2F
%

2
�

2+
F

%, (6.26b)

�3 = 4%(% � �1) +&
2
+ '

2
. (6.26c)

The first and the third of these have a simple interpretation for the case of equal
population of all antenna sites, i.e., for 2= (0) = 21 (0) for all =. In this case, we can
write explicitly,
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�1 = |2\ |
2
+

�����
1
p
#

#’
<=1,2,...

2<

�����
2

= 1, (6.27a)

�3 = 4%(% � 1) +&2
+ '

2 = 0. (6.27b)

from conservation of the total probability.
It is now possible to obtain a single closed equation for the probability %,

3
2
%

3g
2
= (1/2) (�1 � [�2) � (b�2 + [

2
+ 1)% � 3b[%2

� 2b2
%

3
, (6.28)

in terms of the scaled time as well as scaled nonlinearity and transfer parameters

g = 2FC, b = j/4F, [ = +/F. (6.29)

It is clear that g measures the time relative to the transfer time for the excitation
to go from antenna to the reaction center and that the parameters b and [ similarly
measure the nonlinearity and the transfer within the antenna, respectively.

We have already shown in section 5.2 of Chapter 5 how to obtain explicit solutions
of an equation such as (6.28) by appealing to the method that employs Weierstrass
functions. The pathway consists of multiplying Eq. (6.28) by the first g-derivative
of % and arriving at what is essentially Eq. (5.9). Following the notation of (Kenkre
and Ku�, 1992), we write it here as

%(g) = %0 �
6* 0

(%0)

24®(g; 62, 63) +*
00(%0)

. (6.30)

where ® is the Weierstrass function, %0 = %(0), and the 6’s are here given by

62 = (1/9)⌘2
2 + (1/2)⌘1 � b

2
* (%0), (6.31a)

63 = (1/216)⌘3
2 � (1/16)b2

⌘
2
2 + (1/24)b[⌘1⌘2 � (1/4)b2

(⌘1 + [
2
)* (%0),

(6.31b)

in terms of the quantities ⌘1 = [�2 � �1 and ⌘2 = b�2 + [2
+ 1.

Once %(g) is known explicitly through Eq. (6.30), related quantities follow
through

&(g) = 2
3%(g)

3g

, (6.32a)

'(g) = �2 + 2b%2
(g) + 2[%(g), (6.32b)

((g) = �1 + %(g). (6.32c)

The phase between the amplitudes 2\ and 2B is also determined explicitly as

cosk(g) =
'(g)p
%(g)((g)

, sink(g) =
&(g)p
%(g)((g)

. (6.33)
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With 2: (g) = 2: (0)4�8[g cos : for : < 0, we have thus the full solution for arbitrary
initial conditions.

By using the reexpression of the Weierstrass functions in terms of Jacobian elliptic
functions that we have shown in Chapter 5 of this book, see, for instance, Eq. (5.12),
it is now possible to cast the reaction center probability and related quantities in
terms of squares of sn functions. Because it is a straightforward exercise, I will leave
it to the reader. Let us now explore the stationary states of the system followed by an
analysis of the particular case of zero initial occupation of the reaction center.

6.4.2 Stationary States of the Reaction Center

Interesting information can be gleaned by examining the stationary states obtained
by putting the time derivatives in Eqs. (6.25) equal to zero. We get, with BB as the
subscript to denote stationary states,

&BB = 0, (6.34a)

2F((BB � %BB) = 2+'BB + j%BB'BB . (6.34b)

If we restrict attention to the case of homogeneous antenna occupation, 2= = 21 for
all =, it is easy to eliminate (BB and 'BB by using that, in this case, �1 = 1 and �3 = 0,
and obtain a closed nonlinear equation for the stationary state value of the reaction
center probability %BB:

%BB (%BB � 1)
✓
2+
F

+
j

F

%BB

◆2

+ (1 � 2%BB)2 = 0. (6.35)

This result is highly useful for the purposes of analyzing the e�ect of the system
parameters on the e�ciency of the reaction center in the process of collecting the
excitation originally placed in the antenna. To get a brief illustrative glimpse, let us
plot in Fig. 6.8 the solution of the nonlinear Eq. (6.35), examine its dependence on
the nonlinearity ratio b = j/4F for just two values of the ratio j/4+ which we will
call U.

6.4.3 Dynamics for Initial Zero Occupation of the Reaction Center

Let us now consider the time-dependent evolution for the initial assignment 2\ = 0
which means the reaction center is unoccupied and 2= (0) = 1/

p
# which represents

a uniform distribution of the initial probability among the antenna sites. Now we
have,

%(0) = &(0) = '(0) = [3%/3g]g=0 = 0, ((0) = 1. (6.36)

The quantities we have introduced earlier take on simple values
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Fig. 6.8 Reaction center probability in the stationary state plotted as a function of the parameter
b = j/4F for two values of j/4+ : (a) -1 and (b) -0.5. Bifurcation behavior is clearly exhibited.
Modified with permission from fig. 3 of Ref. (Kenkre and Ku�, 1992); copyright (1993) by American
Physical Society.

�1 = 1, �2 = 0, ⌘1 = �1, ⌘2 = 1 + [
2
. (6.37)

And the potential * (%) that is natural to obtain in the standard procedure to solve
the nonlinear di�erential equation of second order for %(g) that features in

[3%(g)/3g]
2 = * (%) �* (%0) + [3%/3g]

2
g=0 (6.38)

reduces to the simple form* (%) = %*1 (%) with the cubic expression
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Fig. 6.9 Transfer from antenna to initially unoccupied reaction center illustrated with the help of
the quartic potential* (%) for several values of the pair U = j/4+ and b = j/4F . See text for the
physical meaning of these quantities. Shaded regions represent intervals in which excitation motion
occurs. Parameter values determine sharply whether the system is confined to the neighborhood of
% = 0 as in (b) and (c) signifying ine�cient transfer to the reaction center or reach values close to
% = 1 as in (a) and (d) signifying a situation that would be desirable for collecting excitation at the
reaction center. Modified with permission from fig. 1 of Ref. (Kenkre and Ku�, 1992); copyright
(1993) by American Physical Society.

*1 (%) = b2
%

3
+ 2[b%2

+ (1 + [
2
)% � 1. (6.39)

The evolution of the system can be said to start from % = 0 where * (%) = 0.
Given that the %-derivative of* at % = 0 equals�1, and is thus smaller than 0, means
that the motion of the representative point proceeds in the direction of positive %. The
system never reaches % = 1 corresponding to full occupation of the reaction center
with the exception of the case [ = �b. This exceptional case occurs if the antenna
intersite interaction and the scaled antenna-trap interaction are equal in magnitude
but opposite in sign. Note here that* (1) = (b + [)

2
� 0 = * (0). Note also that

*1 (%) = b2
%

3
+ 2[b%2

+ (1 + [
2
)% � 1. (6.40)
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This statement leads us to conclude that there exists at least one positive root %1 of
*1 (%) lying between the values 0 and 1 of %. One can state with confidence that the
motion of the representative point is confined to the interval between the values 0
and %1, the smallest of the values that fulfills the condition*1 (%1) = 0, 0  %1 < 1.

Through the application of insights obtained from standard treatments such as
(Uspensky, 1948), Marek Ku� was successful, in the collaborated work we did, in
progressing considerably further in the analysis of the present problem. Following
the presentation to be found in detail in (Kenkre and Ku�, 1992), let us point out
that the necessary and su�cient condition for *1 (%) to have three real roots is that
the discriminant � of the third-order equation *1 (%) = 0 is smaller than 0. With
the notation U = j/4+ , the condition is that the discriminant � is less than 0. This
inequality is fulfilled if and only if 9+8/U > 0, and V� � b

2
� V+ where one defines

V± =

�

1
U

2
�

9
2U

�
27
8

⌥
(9U + 8)3/2

8U3/2

��1

. (6.41)

To ensure that all three roots of *1 (%) lie between 0 and 1, one might impose
another condition,

0  ?<0G  ?<8=  1. (6.42)

Here,
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#
, (6.43b)

are the respective values of % at the local maximum and minimum of *1 (%). Be-
cause *1 (±1) = ±1, if *1 (%) has three real roots, we must have *1 (?<0G) >

0,*1 (?<8=) < 0, and ?<0G  ?<8=. This leads to the conclusion that all roots of
*1 (%) lie between 0 and 1 if and only if the condition (6.42) is satisfied. And it
implies

U < 0,
1
b

2
> 1 �

✓
1
U

� 2
◆2

. (6.44)

We are now in a position to understand the dynamics of our system graphically
on the basis of the analytics we have shown by considering di�erent shapes of the
potential corresponding to di�erent regions in the (U, b) plane. These two quantities
that form the plane represent, as we have seen, the nonlinearity at the reaction center
relative to the internal antenna intersite transfer and to the antenna-center transfer,
respectively.

We see from Fig. 6.9 that the confining interval within the %-extent depends
sensitively on the parameter values and is critical to the e�ciency of excitation
transfer from antenna to reaction center. In order to understand the source of this
behavior, let us examine Fig. 6.10 which shows the potential * (%) for U = j/4+ =
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�1 for three di�erent values of b = j/4F. The reader is reminded that the latter is
a measure of the nonlinearity of the reaction center relative to the antenna-center
transfer.

Fig. 6.10 Graphical understanding of how di�erences in the ratio b = j/4F of the reaction center
nonlinearity to the antenna-center transfer control the e�ciency. Plotted is the potential* (%) for a
fixed value 1 of U = j/4+ for three di�erent values, 2.25. 2, and 1.75 of the b = U = j/4+ . The
values of % are confined to the left well of the potential for the first two cases but spread throughout
the region for the third as is clear from the fact that the central peak of the potential is below the
0 line for the third case, above it for the first case and marginally touching the line in the second
case. Modified with permission from fig. 2 of Ref. (Kenkre and Ku�, 1992); copyright (1993) by
American Physical Society.

Consider in Fig. 6.10 the case b = 2.25. The potential confines the evolution of
the reaction center probability %(g) to the interval from 0 to 0.3. Now examine the
e�ect of lowering b to the value 2.0. The evolution still has % going from 0 to now
0.5. The excitation is confined primarily to the antenna. If, however, one reduces the
nonlinearity by a small amount now to 1.75, % is seen to oscillate fully in the 0 to
1 region. This means that we now have a delocalized state and much more e�cient
transfer from the antenna to the reaction center. The transition occurs whenever the
line b = ±V is crossed in parameter space.
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6.5 Further Directions of Research and Remarks

The sharp reader has not only appreciated the equivalence between the nonlinear
nondegenerate dimer and the globally interacting N-mers that we have stated and
explored in the first part of the present Chapter but has surely noticed the similarity
of the treatments and identity of some equations to be found in the analysis of the
second part of this Chapter as well. Weierstrass functions appear in all three because
of the formally similar closed second-order di�erential equations that need to be
solved. Within the contexts of the systems we are discussing in this book, Tsironis
invoked them first in his Ph. D. thesis but they were also employed, independently,
by Andersen for N-mers and by Ku� for the nonlinear trapping model, respectively.
The slight di�erences in the treatments are consequences of the slightly di�erent
points of emphasis the three used.

There are a number of new directions one could explore in the nonlinear trapping
model if experimental observations were to show the relevance of such theoretical
exercises. I mention two. The first would involve a complete investigation of the
transfer of excitation from antenna to the reaction center for arbitrary types of initial
conditions in the antenna related to spatially di�erent absorption of light or of
initial deposition of the excitation within the antenna. It could also involve scattering
processes among the Bloch states in the antenna. Depending on relevance and need
for detail, the equations of motion within the Bloch band of antenna states could
be of the Boltzmann type leading to relaxation in the band or could involve full
density matrix detail. The second interesting project might be to stay within the
nondegenerate nonlinear dimer system that the study explained in this second part of
this Chapter has covered but to investigate a design feature which might control the
nondegeneracy. The extent of nonresonance of the : = 0 Bloch state of the antenna
with the center state could be dialed to get the most e�cient extent of transfer.
This is a simple and interesting problem that I hope the reader will undertake as an
immediate exercise to tackle. If the communicating Bloch state from the antenna is
energetically nonresonant with the reaction center state as it would normally be, the
process of transfer which changes the e�ective energy of the reaction center state
could bring it into resonance during the transfer process.

6.6 Chapter 6 in Summary

Equal global interactions between any pair of sites in a system of an arbitrary number
of them served as the focus in this Chapter. In its first part, initial conditions with high
symmetry were selected for study so that whatever the site number, it was divided into
two subgroups, evolution in each of which was identical from site to site but di�erent
from the other subgroup. Transitions were noted, analytic solutions were obtained
and their averages and frequencies of oscillation were studied. Weierstrass functions
entered the study as naturally as they did in the study of the nonlinear nondegenerate
dimer in the previous Chapter. This was shown to be more than an accident in that
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any N-mer system could be formally recast as a nonlinear nondegenerate dimer with
an e�ective energy mismatch that could be calculated precisely from the symmetry
imposed in the N-mer and the extent of nonlinearity. This bridge allowed results from
N-mers to be easily (but not trivially) ported over to the nonlinear nondegenerate
dimer and vice-versa. In the second half of the Chapter a reaction-di�usion model
of a phenomenon like sensitized luminescence was studied which might serve in
principle as a crude representation of a photosynthetic unit. Analytic solutions were
again obtained in terms of Weierstrass functions and their equivalent Jacobian elliptic
functions. Arguments were presented concerning stationary states of the system and
their influence on the capture of the excitation and analysis in terms of nonlinear
potentials were given. Interesting unsolved questions were explained and suggested
for analysis.





Chapter 7
Slow Relaxation: the Nonadiabatic Nonlinear
Dimer

In Chapters 4-6 we have explored the e�ects of slapping various complexities on to
the simple DNLSE that we introduced in Chapter 1 and investigated in its simple form
in Chapters 2,3. These complexities have covered, in turn, non-cubic nonlinearities,
static energy mismatch, and globally interacting spatial extensions. In all of those
considerations, the lowering of the energy of the occupied site has been taken to
happen infinitely fast: The nonlinear term in the DNLSE has made its presence
instantaneously on occupation of the site by the quantum particle. Let us now drop
that assumption even as we return to the cubic, symmetrical dimer and ask what the
e�ects of slow relaxation can be. (Kenkre and Wu, 1989a,b)

We could undertake the study by incorporating into the nonlinearity j a time
dependence that makes it rise at a finite rate from 0 to its full value, or use related
descriptions. Instead, let us return to the coupled equations (4.5) and simply refrain
from making the time disparity assumption whereby the time derivative is omitted.
Let us also take the opportunity to consider in the interests of proper representation
of damping e�ects, an additive term proportional to the first-order time derivative.
Equation (4.5b) is then replaced by

3
2
G<

3C
2

+ U
3G<

3C

+ l
2
G< + ( |2< |

2 = 0. (7.1)

We will focus most of the analysis on the extreme limits of high damping (Sections
1-3) in which U (and l as well) is taken to tend to infinity in such a way that the
relaxation may be treated with the help of a single rate parameter � = l

2
/U. We

will also briefly tackle the opposite e�ect of vanishing damping (Section 4) so that
there is no U in the system but only a time proportional to 1/�. A study with external
fields will be mentioned in Section 5.

139



140 7 Slow Relaxation

7.1 Preliminary Considerations

If we take the so-called Aristotelian1 limit of the vibrational parameters, U !

1,l ! 1, so thatl2
/U ! �, where � is constant and may be termed the relaxation

rate, the replacement of (4.5b) is by

3G<

3C

+ �G< + ((/U) |2< |
2 = 0, (7.2)

provided it is also assumed that ( ! 1 (and is proportional to U) so we may keep
the last term in the equation.

For a dimer (< = 1, 2), the interacting equations take the form

8

321

3C

= +22 + ⇢G121, (7.3a)

8

322

3C

= +21 + ⇢G222, (7.3b)

3G1

3C

+ �G1 = �
�j
⇢

|21 |
2
, (7.3c)

3G2

3C

+ �G2 = �
�j
⇢

|22 |
2
. (7.3d)

It is therefore clear that the nonlinearity parameter j of the adiabatic (infinitely
fast relaxation) description is given in terms of the internal parameters and the
nonlinearity j is related to the internal parameters by

j =
(⇢

U�
=
(⇢

l
2
. (7.4)

In the spirit of preview of exciting things to come, let me first display in Fig. 7.1
consequences of Eqs. (7.3), numerically obtained: the time evolution of the prob-
ability di�erence ?(C) = |21 (C) |

2
� |22 (C) |

2 and the relative vibrational coordinate
H(C) = G1 (C)� G2 (C) for the initial condition that the particle is localized on site 1 ini-
tially, and the vibrational coordinate is random. The caption provides the description
of what is displayed.

What we see in the top left panel is the case of a free system (nonlinearity subcrit-
ical so there is no self-trapping transition) displaying particle probability oscillations
(solid blue line) forever. The oscillator displacement di�erence (dash-dotted red line)
starts from its initial value and falls in step with the probability di�erence as time
evolves. As we move clockwise to the top right panel, the nonlinearity value is the
precise critical value, the stationary state is still symmetric, i.e., with equal proba-
bility on either site, and that is how the particle settles eventually after attempting
to oscillate around that value. The left bottom panel should be inspected next. Agin

1 The terminology refers to the contrasting beliefs held by the ancient Greek scientist and the more
modern Englishman, Newton, about what state a body left to itself, i.e., in the absence of a force
acting on it, persists in.
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Fig. 7.1 Evolution of the probability di�erence ? (C) (solid blue) and the scaled oscillator dis-
placement H (C) (dash-dot red) in the nonadiabatic nonlinear resonant dimer for four values of the
nonlinearity ratio j/2+ as shown on top of respective panel: 0, 1, 2, 3, respectively. The initial
condition for the dimer is localized on site 1 in all cases (? (0) = 1) but the initial displacement
of the oscillator is random. The relaxation rate � scaled to 2+ is 2.9. Slaving of the oscillator
displacement proceeds in time in all cases which means that, whatever its starting value, H (C)
attempts to attain the value of ? (C) . Furthermore, we see ? driven to its stationary value ?BB which
is di�erent in the four cases. For the top two panels, j is sub-critical (the second case is at the
margin) and so there is no self-trapped state: the probability di�erence is eventually equalized. For
the bottom two panels the value of j exceeds the critical value 2+ . Consequently, the quantum
particle settles into the self-trapped state. The eventual probability di�erence in the self-trapped
state has magnitude

p
1 � (2+ /j)2 and here equals -0.8660 and 0.9428, respectively. Copyright

Vasudev M Kenkre, 2021. All Rights Reserved.

we observe the slaving of the scaled oscillator displacement di�erence H(C) (started
with a random value for each of the four panels) be slaved by the slower ?(C), which
then evolves into a stationary state which is self-trapped with probability appropriate
to the nonlinearity j = 4+ . While this self-trapped state has more of a contribution
of the right site in it, the last of the panels shows the same process. It has j = 6+
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and it happens to settle into a more self-trapped state and one that happens to have
more contribution of the left site in it.

We will see examples of these various behaviors in the following with theoretical
explanations of what is happening.

7.2 Relaxation at Finite Rates

The consequence of Eq. (7.3) is that the Bloch vector components develop an inter-
action with the vibrational coordinate evolution so that

3?

3C

= 2+@, (7.5a)

3@

3C

= �2+? � jHA, (7.5b)

3A

3C

= jH@, (7.5c)

3H

3C

+ �(H � ?) = 0. (7.5d)

The consequences of finite relaxation are clear in the evolution equations. Terms that
have the nonlinearity parameter j in them, specifically in Eqs. (7.5b) and (7.5c),
are now multiplied by the vibrational coordinate H rather than by the probability
di�erence ?; and an additional evolution equation, (7.5d), appears. We see the
system drive, as its consequence, H to ? at rate �. Surely, if the driving is infinitely
fast, Eqs. (7.5) reduce to the adiabatic Bloch vector equations discussed earlier in
the book.

The exact solution of the newly introduced Eq. (7.5d) is

H(C) = H(0)4��C +
π

C

0
3B �4��(C�B) ?(B). (7.6)

The first term on the right hand side carries information about the initial value of
the vibrational coordinate. That information is wiped out quickly if � is large and
can be neglected in that case. In the second term, �4��C plays the role similar to that
of a Dirac delta-function if � is large enough, thereby slaving H(C) to ?(C) at times
much larger than 1/�.2 In order to probe into relaxation that is not infinitely fast,
we could neglect the first term for C >> 1/� and rewrite the second term through an
integration by parts as [?(C) � (1/�)3?(C)/3C] .

There is another way to solve Eq. (7.5d) that I presented in Kenkre and Wu
(1989a). In the Laplace domain the solution is

2 Let me remind the reader that � exp(��C) , except for an unimportant multiplicative factor of (1/2)
which is sometimes used by convention, is an often used representation for the Dirac X-function.
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eH(n) = H(0)
n + �

+
�e?(n)
n + �

. (7.7)

We denote the Laplace variable by n and use tildes to indicate Laplace transforms.
If we ignore the first term on the right hand side for times C much larger than 1/�
as we did earlier, divide both the numerator and denominator of the second term by
�, and assume that for times much larger than 1/� we can express [1/(1 + n/�)] by
[1 � n/�], we could approximate

H(C) ⇡ ?

✓
C �

1
�

◆
⇡ ?(C) �

1
�
3?(C)

3C

. (7.8)

Two approximations have been made here that the reader should attempt to under-
stand from simple Laplace manipulations.

We thus see that the interaction of the vibrational and particle motion in the
Aristotelian (very fast but not infinitely fast) approximation forces the former to
follow the latter with a lag as Eq. (7.8) shows in its first part. That equation also
shows from its second part that, as equilibrium is approached, the time derivative of
?(C) dies out and H coincides with ? leading to the adiabatic evolution into stationary
states. It is thus possible to write under the approximation that we are looking at
times much larger than 1/�, the closed set of Bloch vector equations, independently
of the vibrational evolution:

3?

3C

= 2+@, (7.9a)

3@

3C

= �2+? � jA
✓
? �

1
�
3?

3C

◆
, (7.9b)

3A

3C

= j@
✓
? �

1
�
3?

3C

◆
. (7.9c)

It is also interesting to ask, as was done by Kenkre and Wu (1989a,b) ,what we can
learn by attempting to derive second order di�erential equations for the probability
di�erence ?(C) alone (eliminating @ and A) but maintaining the interaction beween
H(H) and ?(C). Obviously, we use for this purpose the original Eqs. (7.5) and get

3
2
?

3C
2
= �? � ⌫?3

+ ⇠ (C), (7.10a)

3H

3C

+ �(H � ?) = 0. (7.10b)

The second-order equation (7.10a) should be compared to the adiabatic (or infinitely
fast relaxation) counterpart: Eq. (1.9) for an initial localized condition and Eq.
(2.20) for a general initial condition, respectively. In the finite relaxation case, there
appears now a correction term ⇠ (C). For the localized initial condition ?(0) = 1,
if calculated from Eqs. (7.5) before the approximation used for getting a closure in
?, @, A is applied, we get
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⇠ (C) = �j
2
H(C)

π
C

0
3B H(B)

3?(B)

3B

+
?(C) � ?

3
(C)

2

�
, (7.11)

The quantities �, ⌫ in Eq. (7.10a) are given, as in earlier adiabatic descriptions in
the book, by � = j2

/2 � 4+2 and ⌫ = j2
/2.

The correction term vanishes both at the initial time, because the two terms
separately vanish (the first because the upper and lower limits of the integral are
equal to each other, the second because the initial localized condition is localized)
for an initially localized condition; and and when the system has settled into the
stationary states (by H(C) becoming equal to ?(C) and the consequent cancellation
of the two terms). This means that not only is the system driven by the damping
agency into the system stationary states, as would be expected, but that initially, the
adiabatic evolution will be visible. This is borne out as we will see in the examples
below.

7.3 Numerical Explorations

Because clean analytic solutions are not available in the presence of relaxation at
non-infinite rates, let us study the evolution seminumerically and try to understand
what emerges via analytic arguments. We do this in two steps, first for localized
initial conditions and then for general ones.

7.3.1 Localized Initial Conditions

We begin by presenting a graph that includes, along with the evolution of the
probability di�erence ?(C) of the quantum particle from its site-localized state to
its stationary state, the new element introduced in this Chapter, i.e., the vibrational
coordinate H(C) evolving from its initial value (assumed to be 0), being slaved
to the probability di�erence, and eventually going into the stationary state. The
adiabatic approximation would be represented by H(C) jumping instantaneously into
coincidence with ?(C) at the initial time.

In Fig. 7.2 we see the probability of the particle evolve (solid line) from its
initially fully localized value %1 (0) = 1 to one of the two stationary state values. The
stationary state is seftrapped because the value of the nonlinearity ratio j/+ = 4.5 has
been taken to exceed the critical value 4 for the dynamical transition. The relaxation
rate � has been taken to be 1 in units of + which also scales the time abscissa. We
also see how the oscillator displacement rises from its assumed initially value 0 to
be slaved by the slower particle probability and eventually coincide with it as the
system descends into the stationary state. The internal dynamics on the fast scale is
thus described by Fig. 7.2.

Let us now see how the system parameters a�ect the evolution.
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Fig. 7.2 Time evolution of the oscillator displacement G1 (C) (dotted line) along with that of
the probability di�erence %1 (C) (solid line), the occupation probability of the initially localized
quantum particle, showing the slaving of the former by the latter as a result of the time scale
disparity. The displacement is shown scaled to the probability. The process of settling into the
system stationary state is also clear. For infinitely fast relaxation (adiabatic approximation) explored
in earlier chapters, H (C) would jump instantaneously at the initial time into coincidence with the
probability and stay that way for all time. Reprinted with permission from fig. 6 of Ref. (Kenkre
and Wu, 1989b); copyright (1989) by American Physical Society.

In the uppermost curve (dotted line) of Fig. 7.3, the initially localized probability
%1 (C) is seen to oscillate symmetrically at first and then tend to the value 0.5. The
nonlinearity is subcritical here (j/+ = 1) and so the eventual stationary state the
system goes into is free (not self-trapped).

The two lower lines correspond to self-trapped stationary states because the non-
linearity is supercritical: j/+ = 2.5 (dashed line) and j/+ = 4.5 (solid line),
respectively. Note, in particular, that the middle line (dashed) refers to the formation
of the self-trapped stationary state because j > 2+ although the nonlinearity pa-
rameter is less than 4+ . The latter value is relevant to the dynamical transition of the
adiabatic (infinitely fast relaxation) system, i.e., to the situation when for an initial
condition of localization on a single site the particle undergoes self-trapping. For all
three curves, �/+ = 1. The stationary state values to which the lower lines tend are

both given by
⇣
1 �

p
1 � (2+/j)2

⌘
/2.

In the right panel, we consider much faster relaxation than in the left panel, by a
factor of orders of magnitude: +/� is now 2⇥ 10�3 rather than 1. The main result to
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Fig. 7.3 The probability of the initially (fully) occupied site is plotted as a function of the dimen-
sionless time + C for finite relaxation for various parameter values. In the left panel, the value of
the relaxation rate � is 1 in units of + and respective values of j/+ are 1 (dotted line), 2.5 (dashed
line) and 4.5 (solid line). Evolution to a stationary state is clear in each case. The state is free
(symmetric) in the first case and self-trapped in the second as well as the third case. In the right
panel + /� = 2 ⇥ 10�3 and adiabatic evolution is seen to be approximately followed at short times
in both cases even though at long times the probability approaches the value in the stationary state.
The nonlinearity parameter j/+ is 3.9 for the upper curves, i.e. below the self-trapping transition
but 4.1 , i.e., above the transition value for the lower curves. The solid (dotted) curves represent the
actual (adiabatic) evolution. The cn-like shape we are familiar with from the adiabatic evolution is
very clear in the dotted curve in the upper panel. Adapted with permission from figs. 1 and 2 of
Ref. (Kenkre and Wu, 1989b); copyright (1989) by American Physical Society.

appreciate is that adiabatic evolution is approximately followed at short times even
as the system tends to its stationary state at long times. The nonlinearity ratio j/+
has been chosen to be 3.9 (less than the critical value for the dynamical transition)
in the upper pair of curves but 4.1 (more than that critical value). Solid lines in
each case are for the actual, i.e., non adiabatic, dimer and show a tendency to go

into the stationary state values given by
⇣
1 +

p
1 � (2+/j)2

⌘
/2. The dotted lines in

each case represent the adiabatic dimer (infinitely fast relaxation) and are a plot of
cn(2+C, j/4+) in the upper subpanel (a) and of dn(2+C, j/4+) in the lower subpanel
(b).

Now let us appreciate some visually surprising results through 3 � 3 represen-
tations of the time evolution of %1 (C) in Fig. 7.4. The probability of the initially
occupied site is plotted versus the dimensionless time +C as the nonlinearity is var-
ied in one case (plot versus j/+ in the left panel) and the relaxation rate in the other
(plot versus �/+ in the right panel).

In the left panel we see the probability oscillate initially and then settle into its
stationary state value. Towards the left side or the front of the 3� 3 plot, where j/+
is less than the critical value 2, the oscillations decay to the free state value 0.5. But
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Fig. 7.4 Intriguing e�ects emerging from evolution at finite relaxation concerning static self-
trapping at j = 2+ reflected in the asymptotic limit of the probability (left panel) and a switching
of the stationary state reached as the relaxation rate is varied (right panel). Plotted along the
vertical in both panels is the occupation probability %1 (C) of the initially (fully) occupied site, the
horizontal axes being the time in units of 1/+ in both panels and the nonlinearity j in the left and
the relaxation rate 1/� in the right panel. In the left panel, the asymptotic (large-time) limit of the
probability is 0.5 for j < 2+ but clearly undergoes a transition j = 2+ and begins to decrease for
larger nonlinearity. The transition is marked by an arrow. The value of �/+ is taken to be 2. In the
right panel, the limiting values of the stationary probability reached asymptotic is seen to switch
as the relaxation rate � in units of + increases. The plot shows three switches. The value of j/+
is taken to be 2.5. Adapted with permission from figs. 3 and 5 of Ref. (Kenkre and Wu, 1989b);
copyright (1989) by American Physical Society.

at the critical value, the self-trapping transition that occurs in that the asymptotic
value to which the probability decays, is visually quite clear. The transition is marked
by a blue arrow. Throughout the left panel, �/+ = 2.

In the right panel, we observe a curious switching phenomenon as the relaxation
rate is varied. The stationary state picked for eventual settling down switches from
that localized more towards one side to that towards the other as �/+ is varied.
Throughout the right panel, j/+ = 2.5. For a spatially extended system such as a
photosynthetic unit, this could mean that excitation absorbed at one location could
be deposited at another unpredictably according to complex conditions such as the
value of the relaxation rate.

Let us finally report in this sequence of examples analyzed for localized initial
condition a case of a ‘misleading’ evolution of the probability, Fig. 7.5. The caption
explains what is noteworthy.

What have we learned from these explorations? The main physics to emerge has
been the recovery of the adiabatic (infinite relaxation rate) evolution at short times
and the approach to stationary states of the adiabatic system at long times. The former
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Fig. 7.5 The “misleading” evolution of the probability of the initially occupied site as it first
oscillates around the free symmetric state at short times and then swings away to settle into
the system self-trapped state with probability 0.2. Measurements with probe times of 100/V or
smaller would tend to lead the observer to believe that the system is equilibrating to the free state.
Observations with longer probe times would show self-trapping. Here �/+ has been taken to be
0.15. Reprinted with permission from figs. 3 and 5 of Ref. (Kenkre and Wu, 1989b); copyright
(1989) by American Physical Society.

occurs only if relaxation is fast on the scale of the other rate constants of the system,
such as + , while the latter occurs for all cases provided only that there is relaxation,
i.e., damping e�ects.

It is important to realize that no damping agents exist in the DNLSE as origi-
nally stated and so there is no evolution towards stationary states. Adding damping
externally might ensure the removal of energy of the particle but leading it to the
stationary states of the DNLSE occurs only if we use the manner we have introduced
damping: into the oscillator system.3

It is interesting to use the approximate relation (7.8) that shows that H follows ?
with a delay of time 1/� as it gets slaved to ? by substituting it in Eq. (7.11). The
result, for times much larger than 1/�, is

⇠ (C) =
✓
j

2

�

◆  
?(C)

π
C

0
3B


3?(B)

3B

�2

�

✓
1
2

◆ ⇥
1 � ?

2
(C)

⇤ 
3?(C)

3C

�!
(7.12)

and yields the following closed equation for the probability di�erence:

3 Straightforward additions such as ones we had used earlier, e.g., in (Tsironis et al., 1988), do not
achieve the purpose.
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✓
j

2

�

◆ π
C

0
3B
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!
. (7.13b)

The term ⌫ = j2
/2 is identical to its form as encountered elsewhere in the book, see,

e.g., Eq. (1.9), but �0 is augmented relative to � by the integral term in Eq. (7.13b).
This di�erence between �0 and � at long times but their identity at short times has

strong significance. Equation (7.13a) shows clearly that the time-dependent damping
term in the evolution of ?(C) (that would have vanished identically for infinitely fast
relaxation, i.e., in the adiabatic limit, because of the � in the denominator) drives
the system to stationary states. Because �

0
⇡ � at short times, i.e., before the

integral term in Eq. (7.13b) has accumulated to a sizable value, the system exhibits
oscillations at short times around the values it would in the adiabatic limit. As time
proceeds �0 acquires values consonant with the stationary states and so the system
is driven into those states. On that long time scale it no longer oscillates around the
adiabatic values.

This is somewhat clear in Fig. 7.1 but particularly transparent in Fig. 7.3.
If we look upon Eq. (7.13) as describing a fictitious oscillator with displacement

?, the new term in �
0 can be said to represent a dissociative anti-restoring force

acting on the oscillator given that the integral term is always positive. As C ! 1,
the value of ?(C) must either vanish, or oscillate, or tend to a nonzero constant, or
grow without limit. The last three possibilities would cause 3?/3C to have a positive
nonvanishing value. The anti restoring force would then grow without bound and
dissociate the fictitious oscillator. It is guaranteed that this cannot happen because
the probability di�erence ? is constrained to lie between±1. We conclude that 3?/3C
vanishes as C ! 1.

The long-time evolution of ? is, therefore, to stationary values. Ignoring the trivial
solution ?(1) = 0, we obtain for the stationary probability di�erence,

lim
C!1

?(C) =

vut
1 �

"
8+2

j
2

�
2
�

π
1

0
3C


3?(C)

3C

�2
#
. (7.14)

While the approximate equality of � and �0 corresponds to the short-time oscilla-
tion of the system around the adiabatic values, the neglect of their di�erence at long
times would lead us to the erroneous conclusion that limC!1 ?(C) =

p
1 � (8+2/j2).

This value corresponds not to the stationary values but to the average values around
which the initially localized adiabatic dimer oscillates. The correct result for station-
ary states is

lim
C!1

?(C) =

s
1 �

✓
4+2

j
2

◆
. (7.15)

We see this limit both in our Eq. (7.13) and in the plots we have produced from
our numerical solutions of the evolution equations.
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7.3.2 Delocalized Initial Conditions

Let us now explore the evolution in the presence of finite relaxation for initial
conditions of the quantum particle occupation that are not localized. In Fig. 7.6,
we study the interplay of nonlinearity and initial phase relationships between site
amplitudes. The magnitude of the probability is the same in both cases shown but the
left panel corresponds the in-phase case (the phase di�erence of the particle at the
two sites is 0) and the right to the out-of-phase counterpart (the phase di�erence is
initially c). In both cases we see oscillations followed by coincidence of the oscillator
displacement and the particle probability. The oscillations are wilder for the in-phase
case of hteleft panel 0.

It is easy to see that we can express the version of Eqs. (7.13) slightly di�erently
to cover this more general case of arbitrary phases by keeping Eq. (7.13b) the same
but rewriting Eq. (7.13a) as

3
2
?(C)

3C
2

+ ⇡ (C)
3?(C)

3C

= �0
?(C) � ⌫?

3
(C). (7.16)

Here we have a time-dependent damping coe�cient given by

⇡ (C) =
j

2

2�

⇣
?(0)2

� ?
2
(C)

⌘
�

4+
j

A (0)
�
. (7.17)

The damping depends explicitly both on the initial values of ? and A and on the

Fig. 7.6 Time evolution of the probability %1 (C) (solid line) of the occupation of one of the two
sites, labeled 1, by the quantum particle for a largely delocalized initial condition. The left panel 0
is for an in-phase condition meaning that the initial amplitude 22 (0) is

p
0.49 while the right panel

1 is for an out-of-phase condition meaning that the initial amplitude 22 (0) is �
p

0.49. In both cases
21 (0) =

p
0.51. The particle probability (solid line) and the scaled oscillator displacement (dotted

line) both reach the same scaled steady state value but with wilder oscillations in the in-phase case.
In both cases j = 5+ and � = + . Reprinted with permission from fig.1 of Ref. (Kenkre and Wu,
1989a); copyright (1989) by Elsevier Publishing.
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instantaneous value of ? at all times. The sign of A (0) as well as later evolution can
make ⇡ (C) temporarily positive or negative and lead to oscillations of a di�erent
nature in the two panels. Eventually of course, the system settles into the stationary
states and all time dependence ceases.

Needless to say, �0 in Eq. (7.16) is the sum of � and the time-dependent integral
(j

2
/�)

Ø
C

0 3B [3?(B)/3B]
2 which is zero at short times but nonvanishing as time

progresses. And �, for this general case with arbitrary initial quantum phases, is
itself given by � = (j

2
/2) � 4+2

� 2+jA (0).
Results of a more detailed study of the e�ects of the interplay of initial phases

with finite rate relaxation are displayed in Fig. 7.7. We start with site 1 occupied with
probability 0.8 but study the evolution of the system for all initial phase di�erences
ranging from 0 to c and thus examine the whole gamut from in-phase to out-of-
phase extremes. The 3� 3 representation in the left panel shows the switching e�ect
we have encountered earlier as the relaxation rate is varied whereby the eventual
stationary state reached is switched.

The right panel shows three cross-sections and illustrates the ‘rich-get-richer
e�ect’ we discussed in Chapter 3 but now in the presence of finite relaxation. Notice
how the probability rises to values higher than the initial 0.8 for the middle curve
(dashed) when the initial phase di�erence at the two sites is c/2. In the other two
cases, for the phase di�erence equaling 0 and c (solid and dotted curves, respectively)
initial movement is to decrease the probability but during evolution one also sees the
opposite tendency.

Fig. 7.7 Influence of the initial phases on the evolution of a non-adiabatic (finite relaxation) dimer
shown through the evolution of the probability of one of the sites (initial occupation probability
0.8) plotted along the vertical axis. The dimensionless time + C is along one horizontal axis and the
initial phase di�erence from 0 to ?8 along the other. The full dependence on the phase is in the 3-d
plot of the left panel (a) and the three cross-sections at phase values 0, c/2 and c in the right panel
(b). Parameter values are j/+ = 2.5, �/+ = 10, %1 (0) = 0.8. Modified with permission from fig.
2 of Ref. (Kenkre and Wu, 1989a); copyright (1989) by Elsevier Publishing.
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7.4 Some Exact Calculations in the Non-adiabatic Regime but in
the Absence of Damping

What if the time scale disparity between the vibrational times and the times charac-
teristic of the motion of the particle is not extreme so a non-adiabatic treatment is
certainly necessary but what if there is no dissipation or damping? This is the ques-
tion that we take up in this Section through the examination of a class of unexpected
exact solutions obtained by Marek Ku� as part of a long and fruitful collaboration.

The damping coe�cient U in the first equation displayed in the present Chapter,
Eq. (7.1), is no zero, there is no meaning to the Aristotelian assumption, and the
interacting set of equations for the system is, instead of (7.5),

3?

3g

= @, (7.18a)

3@

3g

= �? � jHA, (7.18b)

3A

3g

= jH@, (7.18c)

3
2
H

3g
2
+ l

2
(H � ?) = 0. (7.18d)

To correspond easily to the original publication in which we analyzed this situation,
(Ku� and Kenkre, 1994), I have expressed the time here in the form of the dimension-
less g = 2+C, and taken the symbols j,l, also dimensionless to mean the respective
ratios of the nonlinearity and the vibrational frequency to 2+ .

It is wise to begin our considerations knowing that a project to find exact solutions
of Eqs. (7.18) for arbitrary initial conditions is doomed to failure. Indeed, it has
been shown (Milonni et al., 1983; Belobrov et al., 1976) that an equivalent system
ecountered in quantum optics exhibits chaos for some values of parameters and initial
conditions. What we will see, however, is that some useful and exact techniques used
by Jele�ska-Kukli�ska and Ku� (1990) (see also (Kujawski, 1988)) in a related
context in quantum optics can be ported over here for our system and used to extract
analytic solutions in terms of elliptic functions for our problem in a limited range of
parameter values.

7.4.1 The Essence of the Technique and Solutions

We observe that the system represented by Eqs. (7.18) has two integrals of motion,

?
2
+ @

2
+ A

2
,

which equals 1 from the conservation of the particle probability, and also,



7.4 Some Exact Calculations in the Non-adiabatic Regime but in the Absence of Damping 153

A

j

� ?H +
H

2

2
+

1
2l

✓
3H

3C

◆2

,

which refers to the conservation of energy in the entire system including both the
particle and the vibrations.

In seeking a way of finding the form of the vibrational coordinate H, we note that
the adiabatic treatment takes it to be identical to ? while the procedures appropriate
to inclusion of the large but not infinite damping rate � e�ectively takes it equal ?
with a time lag: H(C) ⇡ ?(C � 1/�). Traditional analyses in nonequilibrium statistical
mechanics, particularly addressing the interlocked BBGKY hierarchy, have some-
times used the concept of expressing the slower quantities as functions of the faster
ones. If, following that idea in the form perfected in (Jele�ska-Kukli�ska and Ku�,
1990), we assume that ? is a sum of powers of H, and particularly keep only the
linear and the cubic term in the expansion, we could try

? = U0H + U1H
3
. (7.19)

Using this ansatz form in the first of the extended Bloch-like equations (7.18),
and employing (7.18d) to express the second derivative of H in terms of H and ?, it
is possible to obtain
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, (7.20)

whose substitution in Eqs. (7.18), followed by an integration, allows us to express A
in the form

A = W +
1
2
jU1H

2
+

3
4
jU2H

4
, (7.21)

W being an integration constant. The right hand sides of Eqs. (7.18b) and (7.20)
both equal the derivative of @. Consequently, when compared to each other, they
produce a closed di�erential equation for H which can immediately be used to obtain
solutions in terms of Jacobian elliptic functions. The di�erential equation is of the
familiar form ✓
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2
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, (7.22)

with constant coe�cients
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Fig. 7.8 Delineation of regions of parameter space spanned by the vibrational frequency l and
the system nonlinearity j shown by their squares. Shading shows where exact analytical solutions
of the nonadiabatic dimer can be found as indicated in th text. The dashed lines divide regions of
free motion from self-trapped motion. Modified with permission from figs. 1 and 2 of Ref. (Ku�
and Kenkre, 1994); copyright (1994) by Elsevier Publishing.

The explicit analytic solution satisfying the ansatz for the Bloch vector compo-
nents as well as for the vibrational coordinate that underlies them, is, thus,

? =0cn(⌦g, :) + 1cn3
(⌦g, :), (7.24a)

@ = �⌦sn(⌦g, :)dn(⌦g, :)
⇥
0 + 31cn3
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⇤
, (7.24b)

A =20 + 21cn2
(⌦g, :) + 22cn4

(⌦g, :), (7.24c)

H =
4⌦:
j

cn(⌦g, :) =
4⌦:
j

dn(⌦:g, 1/:). (7.24d)
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The elliptic modulus is related to the frequency through

⌦2 =
l

2
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2(2:2 � 1)
(7.25)

and is determined from the system parameters through the following complicated
relation. With the understanding that
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Beware of the misinterpretation that can occur between the elliptic modulus : that
we use throughout the book and its square that is called in some circles as < = :2.
This cautionary note is particularly aimed at the rare reader who might consult the
original publication in which we had used the elliptic parameter< but used the letter
: for it, bringing the confusion kettle inadvertently to a super boil!4

The quantum particle tends to move on both sites in three of the panels of Fig. 7.9
but in the right bottom panel, for which the nonlinearity is supercritical, as indicated,
selects one of them.5 This shows the onset of self-trapping.

Interesting new time dependence showing double peaks is visible in each of
the panels of Fig. 7.10 as the system parameters are changed (as indicated in the
plot). The frequency has a high value (l2 = 10) in both cases. The nonlinearity is
subcritical in the upper panel and leads to free motion but it is supercritical in the
lower panel where the quantum particle is self-trapped.

4 We seem to have used there the correct symbol convention with the vertical bar | as a separator
rather than a comma , but what many would frowningly (and, I must confess, appropriately) call it
an incorrect terminology.
5 All values of the parameters shown in these plots are relative to 2+ and thus should be considered
dimensionless.
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Fig. 7.9 Analytic solutions exhibited for small and moderate values of the vibrational frequency
as shown. The nonlinearity is subcritical in three of the four panels and, accordingly, the quantum
particle moves on both sites equally. In the bottom right panel, j2 equals 3.5, a supercritical value,
and so self-trapping occurs. Modified with permission from figs. 3 and 4 of Ref. (Ku� and Kenkre,
1994); copyright (1994) by Elsevier Publishing.

Regions of parameter space in which the exact solutions can be found are shown
below in Fig. 7.8. Some of the solutions themselves are exhibited in subsequent
plots provided below. The coe�cients 0, 1 and the 20s are calculated with the
understanding that the sign in Eq. (7.26c) corresponds precisely to the sign in Eq.
(7.27c).
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Fig. 7.10 Analytic solutions obtained for even higher values of vibrational frequency as shown.
Self-trapping is occurring in the lower panel but the motion is free in the upper panel. The parameter
values are visible in the Figure. Modified with permission from fig. 5 of Ref. (Ku� and Kenkre,
1994); copyright (1994) by Elsevier Publishing.

From the multitude of time-dependent solutions exhibited by Ku� and Kenkre (1994)
on the base of their analytic work, we show a selection. The lowermost values of the
vibrational frequencies are represented in Fig. 7.9 and higher ones in Fig. 7.10. The
self-trapping transition from free to bound behavior is clear in Fig. 7.11. It should
be kept in mind that the solutions shown are all analytic and without any adiabatic
approximation made.

Particularly transparent is the graphical depiction of the transition in Fig. 7.11. In
all three cases shown the vibrational frequency is given by l2 = 1. Each case corre-
sponds, however, to a di�erent value of the nonlinearity parameter. The intermediate
value, j2 = 256/81, depicts the transition from free to self-trapped motion. We see
that for a very slightly smaller value, j2 = 3.160, the motion shows oscillations
on both sides which means that the particle is free. For a very slightly larger value,
j

2 = 3.161, the motion is only on one side and the particle is self-trapped. As stated
above, the analysis is fully exact with vibrations completely treated.
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Fig. 7.11 Three di�erent exact solutions exhibiting the self-trapping transition with vibrations fully
treated. Vibrational frequency is given in all three cases by l2 = 1. The values of the nonlinearity
j are di�erent in the three cases and shown in the Figure. The transition case as well as free and
self-trapped state are clearly seen. Reprinted with permission from fig. 6 of Ref. (Ku� and Kenkre,
1994); copyright (1994) by Elsevier Publishing.

7.4.2 Tiptoeing Around Regions with Chaos

The dissipationless quantum dimer treated in Ku� and Kenkre (1994) and described in
the preceding sections has a (to me, irritating) propensity towards chaos as any trained
eye would suspect on even casual inspection. How has the discussion presented
been possible then and what is its value? The question has been answered in the
Preface to the present book where allusion has been made to “...The latter analysis
tiptoes teasingly around chaotic regions, but can be made to yield precise solutions
in terms of elliptic functions for certain values of the system parameters.” Marek
Ku� performed this delicate tiptoeing during our collaboration decades ago and
was able to delineate carefully regions of parameter space where analytic solutions
were possible from regions where chaos spoiled the fun. The reader may glean
some of the information from Fig. 7.8 above. As explained in (Ku� and Kenkre,
1994), numerical investigations show clearly that the ever present possibility of
chaotic behavior means that in a universal manner, “...typical trajectories cannot be
classified as representing free and self-trapped motion. Nevertheless it is relatively
easy to find initial conditions for which the system exhibits the tendency to stay in a
well-localized state characterized by a non-vanishing value of ? for a relatively long
time.” One of the primary points is that the analysis is clear, and free of the influence
of chaos, if one sticks to parameter domains indicated. The reader of this book is
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referred to the original publication for a lengthier discussion. However, a plot from
that publication reproduced here as Fig. 7.12 might be of some help.

Fig. 7.12 A case in which the parameter values are in the chaotic region and so do not permit
analytic solutions in terms of Jacobian elliptic functions. However, by inspection of the mean value
of ? in the two panels, one can state that the particle is free in the upper but self-trapped in the
lower panel. Parameter values are as indicated. See text. Reprinted with permission from fig. 6 of
Ref. (Ku� and Kenkre, 1994); copyright (1994) by Elsevier Publishing.

The trajectories in the plot do not fall in the regions for which there are exact
solutions in terms of elliptic functions to be found. The oscillations, although not as
regular as in the deterministic regions, lead to clearly di�erent mean values of ?. For
l

2 = 5, j2 = 1, we can state that the motion is free because ? oscillates around zero
mean. This is the upper panel. Contrast this with the lower panel in whichl2 = 5 but
j

2 = 10. There is little question that for the latter case the evolution prefers positive
values of ? and we can say that the particle has undergone self-trapping.
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7.5 Averaging Approximation

There is one more method that we have had the opportunity to apply to the under-
standing of the evolution of the nonadiabatic dimer. One of the techniques in the tool
kit of the investigator of periodic motions of nonlinear systems, it goes under the
name of the ‘averaging approximation’. It is a powerful procedure to know about. Its
application to our system carried out by Wu and Grigolini in collaboration with me
allowed us to make progress. However, because I have no deep new insights to share
that have emerged from that study (Wu et al., 1990), I will describe it in the briefest
of manners and refer the reader to the original publication.

The essence of the method consists of selecting a constant of the motion for the
adiabatic case so that in the presence of nonadiabaticity its time evolution is slow,
and of employing approximation methods for the description of the full system. We
start with the system of equations (7.9) which is closed in the Bloch components ?, @,
A but which takes into account the nonadiabaticity. Looking around for constants of
motion of the adiabatic counterpart, we come across the obvious candidate ?2

+@
2
+A

2

which equals 1 as the result of the conservation of probability. However, it is not
of use because it is a constant of motion for all values of the relaxation rate �, not
just the infinite case. We therefore discard it. Another candidate happens to be, as a
moment’s reflection will show, A � (j/2)?2, which we will rewrite, by adding to it
a term which we know to be constant, as

⇢ (C) = A (C) � (j/2)?2
(C) + j/2 + 1/2j. (7.28)

The choice of the additive term makes ⇢ vanish in the non-trivial stationary state
(? < 0) in which ' = �1/j and ? = ±

p
1 � 1/j2.

In the presence of finite-rate relaxation (1/� < 0), i.e., when the adiabatic limit
does not apply, the quantity we have selected, ⇢ (C), evolves in time, its time derivative
being equal to �(1/�)j@2

(C). If j/� can be considered small, the rate of change of
⇢ is small, and ⇢ can be considered a slow variable relative to ?, @ and A . One takes
advantage of the fact that the latter quantities are oscillating in time. Replacement
of @2

(C) by its time average allows us then to approximate the evolution of the slow
variable ⇢ (C) through

3⇢ (C)

3C

= �
j

�
h@

2
i. (7.29)

Expressing @2 in terms of ⇢ itself and one of the Bloch vector components, ?, one
obtains the possibility of evaluating ⇢ (C) to various degrees of approximation. The
interested reader will find details of development in Wu et al. (1990).

7.6 Chapter 7 in Summary

To refrain from making the adiabatic approximation, i.e., the assumption of infinitely
fast relaxation of the nonlinear system, was the purpose of this Chapter. This was
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done by introducing into the system a degree of freedom exemplified by the vibra-
tional coordinate and by investigating situations in which it did not relax with infinite
rapidity to the adiabatic limit. The first plot exhibited in the Chapter showed what
was to come, the next half a dozen figures considered that there was fast damping
of the vibrational coordinate and the remaining plots described the absence of any
damping. The basic equation of motion obeyed by the vibrations was considered to
be the second order (7.1). Under the Aristotelian limit of high damping, wherein in-
ertial e�ects were neglected, it was reduced to one that forced the vibration to follow
the probability di�erence exponentially at the relaxation rate �. Analytic approxima-
tion methods were developed that uncovered an integral relation (7.6) between the
vibration and the probability di�erence which also showed how the former tended
to the latter with a lag. Plots such as in Fig. 7.2 showed this behavior visually. Con-
sequences of the finite relaxation investigation were that we could see that adiabatic
evolution was recovered at short times and the system was forced into the stationary
states of the adiabatic system at long times. A number of surprising e�ects were
further noticed in plots such as Fig. 7.4 and Fig. 7.5, and the interplay with initial
quantum phases was apparent in Figs. 7.6 and 7.7. In the absence of damping there
was chaos to be avoided in the equations if we were seeking deterministic analytic
solutions. We were able to obtain such solutions in certain parameter regions. The
regions were made clear in Fig. 7.8. The solutions for the vibrational coordinate
were obtained as functionals of the probability di�erence, a ruse borrowed from
non-equilibrium statistic mechanics theories and applied in earlier quantum optics
contexts (Jele�ska-Kukli�ska and Ku�, 1990). These solutions turned out to be Ja-
cobian elliptic functions as in Eqs. (7.24). Their plots in Figs. 7.9, 7.10,7.11, showed
interesting features and uncovered self-trapping transitions. A quick description of
the application (Wu et al., 1990) of another independent technique of analyzing finite
relaxation, the averaging technique, was briefly given.





Chapter 8
Thermal E�ects: Phase-Space and Langevin
Formulations

Introducing damping into the vibrational part of our system as we did in Chapter 7
meant that we opened the system under study to the universe. The natural follow-up,
which is to investigate thermal e�ects on our system, will occupy us in the present
Chapter. My own interest in the subject has been primarily procedural and, accord-
ingly, the Chapter is divided into a part on equilibrium phase-space considerations
and a part on a non-equilibrium description of time-dependent equations.

8.1 Introduction: Background on the Davydov Soliton Stability
against Thermal Fluctuations

This introduction describes the active but (unfortunately) not conclusive work that
had been going on in the 1980’s and 90’s in the subject of the thermal stability of
Davydov solitons.

A surge of interest had appeared in the research community in the subject of
Davydov solitons because they had been suggested as being responsible in an essen-
tial way for transport, along proteins, of the free energy released by the hydrolysis of
adenosine triphosphate. There were two questions that battles were fought over. One
of them was whether the traveling state that Davydov had suggested as the carrier
of the energy was truly a consequence of the quantum dynamics of the system or
simply a hopeful invention of creative minds. Another, and one that is tangentially1

relevant to the present Chapter, was whether the quantum mechanical state, even if

1 The word ‘tangential’ is used here to represent the fact that, as when the debates were going
on decades back, my own interest was/is procedural rather than in whether the Davydov idea was
tenable in realistic biological systems. I worked on methodologies to describe the thermal e�ects
and was only mildly interested in whether the nonlinear structures were actually stable at the
temperatures at which they were invoked. As will become clear in the sequel, the physics intricacies
are already delightfully complex in the description part. For that, there is no need to add the debate
issues regarding the comparison to observations that make the matter fiercely undecided in the
opinion of some.

163
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it were to exist, was stable against thermal interactions with the natural reservoirs
that could be said to be in contact with the biological objects at room temperatures.
Diametrically opposite opinions were voiced. We learned from some, e.g. (Lomdahl
and Kerr, 1985; Kerr and Lomdahl, 1987) that

“...the original soliton proposal does not work at biological temperature. The ‘crisis in bioener-
getics’ is still with us!”.

The sentiment was opposed in no uncertain terms by (Kadantsev et al., 1987,
1988) who concluded that

“...thermal vibrations not only do not prevent the soliton transport of energy but...become its
necessary condition.”

What could lead to such contrast in the opposite views that were held by the
researchers? One might attribute it to two quite separate sources. The uncertainty in
the values of the physical parameters involved was surely one of them. The other was
the great variety of theoretical approaches used to investigate the problem. Typically,
when the theoretical situation is full of such conflicts, e�orts are naturally made to
construct bridges that would lead to an understanding of the interrelations among
the diverse methods of attack. Surprisingly, there was the almost complete absence
of such bridge work, each subgroup of investigators remaining wedded to its own
way of regarding the phenomena. As I understand it, the theoretical approaches were
basically five:

(i) direct calculations from the Hamiltonian of the interacting system via pertur-
bation methods such as those carried out by Cottingham and Schweitzer (1989) and
Schweitzer (1992), and via variational principles and other procedures (Bolterauer,
1990),

(ii) quantum Monte Carlo calculations taking the full Hamiltonian as the point of
departure and avoiding semiclassical approximations such as by Wang et al. (1990),

(iii) semiclassical Monte Carlo methods in which the interacting boson field is
represented classically and the moving quasiparticle quantum mechanically as in the
work of Cruzeiro et al. (1988); Cruzeiro-Hansson and Takeno (1997),

(iv) numerical simulations of the semiclassical model with stochastic interactions
with a thermal reservoir appended explicitly as by (Lomdahl and Kerr, 1985; Kerr
and Lomdahl, 1987), as well as by (Lawrence et al., 1986; Forner, 1991), and

(v) analytic calculations via a Fokker-Planck treatment of the semiclassical model
in thermal interaction with a reservoir as in the work of Grigolini et al. (1989); Kenkre
and Grigolini (1993); Kenkre (1993); Kenkre and Ku� (1994); Kenkre (1994c).

There is, perhaps, a natural reason for the diversity in the literature along these
lines. A thermal reservoir has two di�erent kinds of consequences on the evolution
of a system. For want of a better term, we might distinguish them as phase-space
e�ects and fluctuation e�ects. The former are associated with the statistical weights
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for states of varying energies as taught to us by Boltzmann or Gibbs; they arise from
a consideration of equilibrium statistical mechanics. Nonzero temperature is treated
here by the introduction of a canonical density matrix involving Boltzmann thermal
weights. The analysis is typified by (i)-(iii) above. Such a treatment does address the
first of the two e�ects but not the second. Brownian methodology, often associated
with the terms Langevin or Fokker-Planck (generally stochastic), characterized by
(iv) and (v) above, tends to take aim at the second e�ect, and, as a by-product, at the
first.

These latter, stochastic, methods are also able, in contrast to the former, to address
the approach to equilibrium and not merely the nature of the equilibrium state. They
su�er from the fact that they are always considerably more di�cult to implement,
except though numerical techniques. Such techniques can take away from the trans-
parency of what is going on as one moves from assumption to result. Needless to say,
whenever properly interpreted, both approaches should yield the same answers about
the final (equilibrium) state and therefore about the stability of the soliton. However,
inevitable approximations and assumptions along the way disturb this ideal situation.
They naturally lead to divergences in the final consequences, making it impossible
often to resolve the issue.

As you step into the present Chapter, dear reader, my suggestion is to be aware
of the fact that the important question about the stability of Davydov solitons in
biological environments is by no means universally settled, that opinions di�er
sharply about the issues, and that what I am presenting below, while according to me
not only useful but fascinating as well to any student of physics, is only procedural.
My view is that the responsibility to come to a conclusion about the applicability of
the methods set out for the Davydov problem is not mine in the setting of the present
book but the reader’s, if she is so interested.

8.2 Phase-space Considerations and Partition Function Analysis

Let us begin with equilibrium statistical mechanics and carry out first a partition
function analysis of the nonlinear structures that we encounter in our system. This
will occupy us in Section 2 of the present Chapter.

If we take the Hamiltonian laid out in Eq. (4.1) as applying to a system of two
sites only, 1 and 2, we have

�̂ = +Â + 6l?̂
✓
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†
+ 1

p
2

◆
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†
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◆
, (8.1)

where the particle operators ?̂ and Â along with their companion @̂ not appearing in
the above equation are given by
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and those describing the intersite vibration are given by2
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/8
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2. (8.3)

The semiclassical approximation inherent in our analysis throughout the book so
far replaces the vibration operator Ĥ and its conjugate momentum ĉH by 2-numbers,
which we denote by removing the circumflex symbols, leaving the particle operators
intact. This results in our being able to express the Hamiltonian as a 2 ⇥ 2 matrix
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with elements that are functions of the 2-numbers H and cH .
Let us start with the observation that, omitting an unimportant factor of 2, the

partition function & of our semiclassical system, which we know is obtained by
evaluating the trace )A 4�V�̂ of the exponential of the Hamiltonian operator, is given
by
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Note that the meaning of the trace operator includes integrations over the classical
vibrational space. Here 6I = H, the nonlinearity parameter that we have discussed
throughout the book is j = 262

l, and the parameters in Eq. (8.5) are given by

E = 2+/j; V = j/2:⌫) , (8.6)

) and :⌫ being, respectively, the temperature and the Boltzmann constant.
Our first task is to understand how the semiclassical expression (8.5) at vanishing

temperature can describe the self-trapped stationary states of the dimer that we have
been discussing throughout the book. For low temperatures ) , which means large V,
the integrand in peaked at a value of I that we will denote by I<. It is clear that &
can be evaluated to an excellent approximation through
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There are two possible values the peak value I = I< can take. Either I< = 0 or
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2 Surely, \ has been put equal to 1 as everywhere else in the book.
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Additionally, the value of the second derivative of 5 at the nonzero root3 is given by
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Eq. (8.9) yields
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At the zero of temperature, each side of this equation is infinite so that

I
2
<
= 1 � E

2
. (8.12)

This result shows that the location of the vibrational coordinate of the system at
vanishing temperature has the largest possible value when the intersite interaction is
zero, that it decreases as the intersite interaction increases relative to the nonlinearity
j, and that it vanishes at E = 1, equivalently at + = j/2 = 6

2
l. This marks the

transition from self-trapped to free behavior. Further increase in + disallows the
non-zero solution.

These developments in the evaluation of the partition function suggested to me an
obvious magnetic analogy given our nonlinear system and the mean field ferromag-
net. To study self-trapping it appeared natural, therefore, to seek out in our system a
quantity which would correspond to the magnetization in a magnet and use it as an
operator $̂ whose average via the standard Gibbs statistical mechanics prescription
would serve as a measure of the self-trapping at any temperature of interest via

hh$̂ii =

Ø Ø
3H3cH )A $̂4

�V�̂Ø Ø
3H3cH )A 4

�V�̂
. (8.13)

It is clear that the trace operation would reduce to one over the exponential of the 2⇥2
matrix of Eq. (8.4) (shown explicitly within the integrand in Eq. (8.13)), followed
by an integration over H with Gaussian weights exp

�
�VlH

2
/2

�
: the e�ects of the cH

integration would cancel in the numerator and the denominator. The program was
explained in essence at two conferences (Kenkre, 1994b, 1995), begun for a dimer in
(Kenkre and Cruzeiro-Hansson, 1994), continued for spatially extended counterparts
of the dimer in (Kenkre et al., 1994), and will be explained in the rest of this section.
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Fig. 8.1 The localization parameter hh?ii plotted in a 33 representation versus the dimensionless
intersite transfer E = + /6

2
l along one horizontal axis and the logarithm of the dimensionless

reciprocal temperature 1/) in units of :⌫/62
l along the other. For large enough E it shows a dual

behavior of a rise with temperature increasing and a fall for further increases. For small enough E
it shows merely a decrease as temperature increases. Modified with permission from fig. 4 of Ref.
(Kenkre and Cruzeiro-Hansson, 1994); copyright (1994) by Springer Publishing.

8.2.1 Choice of Observable, Basic Expression, and Primary Behavior

The magnetic analogy suggests that we select the probability di�erence ? = %1�%2 in
the case of a dimer as the observable to focus on. The eigenvalues of the Hamiltonian
matrix (8.4) are easily seen to be

⇢
± =

l

2

⇣
H

2
+ c

2
H

⌘
±

q
(6lH)2 ++2

. (8.14)

On calculating the eigenvectors of the matrix, we see that, in each system state, the
probability di�erence depends on the vibrational coordinate H in the form

? =
Hp

H
2 + (6E)2

. (8.15)

The selection of the observable to study is guided by the necessity to focus on the
correlation between the particle and the vibrational field as the essential signature
of the nonlinear structure. We choose ?̂ as the $̂ in Eq. (8.13) and focus on the

3 This non-zero root in Eq. (8.9) is strikingly similar to what one obtains as a well-known result in
the mean field theory of ferromagnetism often associated with the name of Weiss or Néel.
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ensemble average of Eq. (8.15),
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which we call the ‘localization parameter’, to provide a tool for the investigation of
thermal stability. Generally, an increase (decrease) in the magnitude of this quantity
would mean that temperature aids (hampers) the nonlinear structure. The ‘?-dipole’
points in a direction which in one of the two states of the dimer is parallel and in the
other anti-parallel to the ‘magnetic field’ represented by the vibrational amplitude H,
the energies of the two states being di�erent as seen in Eq. (8.14). To be kept in mind
is that in taking the ensemble average we must ensure that a trivial cancellation does
not occur simply because of the inherent symmetry of the available phase space. A
standard feature of magnetic field treatments in symmetric systems, this means that
we average over half the available phase space: the I-integral extends from 0 to 1

rather than from �1 to 1.

Fig. 8.2 The localization parameter hh?ii plotted as a function of the dimensionless intersite
transfer E = + /6

2
l for three values of the temperature ) expressed relative to 62

l/:⌫ , 0 (solid
line), 0.27 (dotted line) and a much larger value 72 (dashed line), as shown. Note that similarity
in the E-dependence of hh?ii with the ) -dependence of the magnetization in a similar magnetic
system. Reprinted with permission from fig. 2 of Ref. (Kenkre and Cruzeiro-Hansson, 1994);
copyright (1994) by Springer Publishing.

We are able to evaluate the integral in the numerator of the hh?ii expression ana-
lytically in terms of error functions but that in the denominator requires approximate
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analytical or numerical evaluation.4 Figure 8.1 shows that the localization parameter
can show a tendency to initially rise with a rise in temperature and then fall with in-
creases in temperature if the intersite interaction is large enough. This dual behavior
represents (dynamic) disorder-induced self-trapping followed by a destruction of the
nonlinear structure at high temperatures because of the usual Boltzmann equaliza-
tion of weights no matter what the energy. If the intersite interaction is smaller than
that required for self-trapping at zero temperature, only a decrease is seen in hh?ii

as temperature increases from 0.

Fig. 8.3 Interesting low-) behavior showing a hindering of the structure at low ) , an aiding at
intermediate ) , and a hampering at high ) corresponding to the system being in region II in the
inset. The main figure is a plot of the localization parameter versus ) ( temperature) expressed as
a ratio to the characteristic value 62

l/:⌫ . The inset is a plot of hh?ii showing its dependence on
E . The other two regions in the inset are less interesting. Modified with permission from figs. 4 and
5 of Ref. (Kenkre et al., 1994); copyright (1994) by American Physical Society.

The primary behavior of the localization parameter is that it can have both ten-
dencies: being aided by an increase in the temperature in one range and hampered

4 Kenkre et al. (1994) have provided detailed analytical expressions, both exact and approximate but
we display here plots based on numerical calculation of the denominator for the sake of maximum
accuracy.
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by it in the other. To understand this better, we show Fig. 8.2, which is a plot of our
localization parameter hh?ii versus the dimensionless interaction matrix element
relative to the energy lowering for three di�erent temperatures ) . The solid arc is at
the zero of temperature. We see in this case that hh?ii disappears abruptly beyond
E = 1 in a manner reminiscent of the magnetization plotted versus the temperature: in
the latter case, the magnetization disappears abruptly beyond a critical temperature.
It is clear that the general tendency of the system is as follows. An increase in )
causes hh?ii to decrease if E is rather small but it increases, and then decreases if E
is larger than the critical value 1. If it lies in the intermediate range (lying between
0 and 1), varied behavior occurs at low temperatures.

8.2.2 Low Temperature Behavior

Fig. 8.4 Plot of the E-dependence of the two characteristic temperatures )C and )? . See text.
Reprinted with permission from fig. 6 of Ref. (Kenkre et al., 1994); copyright (1994) by Springer
Publishing.

Fig. 8.3 shows what can happen when E has a value intermediate between 0 and 1.
The localization parameter can decrease as ) increases from 0 and reach a minimum
that we call a ‘trough’ and whose temperature we denote by )C . On increasing )
further, hh?ii rises from the trough to a maximum that we associate with the word
‘peak’. The temperature at this point is called )? . Further increase in temperature
causes the eventual expected decrease of hh?ii as the nonlinear structure is destroyed.



172 8 Thermal E�ects

All this is shown in Fig. 8.4 in a graph versus E. The reader should consult the original
publication for more detailed analysis.

8.2.3 Extension Beyond the Dimer

What we have explained so far has addressed a two-site system for the quantum
particle, i.e., we considered a dimer as in most of this book, interacting with what
can be regarded as a single (classical) vibrational coordinate representing the dif-
ference in displacements of the two sites. Whether there are new insights to gain in
generalizations of this system was the question raised by Kenkre et al. (1994). They
considered for the most part a crystal (13 for simplicity) interacting with two vibra-
tional modes of equal frequency and coupling constant so analytic considerations
could be used and also, separately, a particle dimer interacting with an arbitrary
number of vibrational modes with di�erent coupling constants and frequencies. I
have refrained from showing the calculations for both extensions in the book because
they uncover no surprises but lead to expected behavior reinforcing the picture we
have constructed of the behavior of the localization parameter. The interested reader
should consult the original publication. We start with the spatial extension to # sites
and write the semiclassical Hamiltonian as (Kenkre et al., 1994)
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<
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with the translational invariance explicit in the interaction matrix elements + being
functions of di�erences in location and in the equal site energies n at all sites and :
and �: being the two specific modes with which the particle interacts.

Consider # to be even for simplicity, take the interacting mode to be : = c for
simplicity so we can take H: = H�: = H and, although the results can be generalized
to any number of dimensions, assume the crystal to be a 13 chain.

Diagonalizing as done earlier for the dimer system but assisted also by a Bloch
transformation as a result of the chain translational invariance, we obtain the exten-
sion of Eq. (8.14) to be
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@
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+

q
(6lH)2 ++2

@
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Here l = l: = l�: is the frequency of the interacting mode : = c, the band
energy+@ equals 2+ cos(@/2) if we consider only nearest neighbor interaction matrix
elements for the particle on the chain, which we assume from now on for simplicity.
Also, we have dropped the constant site energy n without loss of generality.
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The partition function is evaluated as in the dimer analysis. The choice of the
localization parameter in this extended case falls again on the variable conjugate to
H in the Hamiltonian:

? = (2/#)
’
<

%< cos :<, (8.19)

where %< is the probability of the particle occupation of site < and : is the wave
vector of the vibrational mode(s) that interacts with the particle. For the #-site chain
interacting with the c mode, this gives

? = �(2/#) (%1 � %2 + %3 � %4 + ... � %# ). (8.20)

Among explicit calculations of the localization parameter performed with this prepa-
ration are those for

• Arbitrary size of crystal, interaction with a single vibrational mode,
• Details for a tetramer (# = 4) with explicit evaluations of eigenvectors and

eigenvalues and peculiarities of interaction with the c/2 mode,
• Details for a hypermer (also called an #-mer) that is a system with an arbitrary

number of sites with equal intersite interaction as in the systems analyzed in the
first part of Chapter 6,

• Dimer interacting with an arbitrary number of modes.

The exercises are interesting to perform but all reinforce the picture we have
explained.

8.3 Langevin/Fokker-Planck Analysis of Brownian Motion

In this second part of the present Chapter, we undertake Brownian motion studies
in order to understand the e�ect that thermal interactions with a reservoir can have
on the simple nonlinear system we have been investigating in this book. As in
the analysis published by Lomdahl and Kerr (1985), our interest is in studying
how robust nonlinear entities such as solitons and polarons remain against bath
fluctuations induced by heightened temperatures. The di�erence is that our treatment
is analytical, our system is much simpler (a dimer rather than a Davydov soliton),
and we focus on the procedure rather than values of parameters obtained from
experimental data in the Davydov debate.

The question we pose, expressed in a form appropriate to dimer investigations, is
as follows. We know already that the nonlinear nonadiabatic dimer analyzed in the
last Chapter settles into localized states (the stationary states of the adiabatic dimer)
at ) = 0. Is there a characteristic temperature )2 such that, while the dimer settles
into those localized states for ) < )2 , it escapes from them at higher temperatures
and attains equal population in the two sites for ) > )2? In other words, how
do we describe quantitatively the destruction of the localization phenomenon that
presumably occurs at high temperatures?
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Our studies will be found to have a dual outcome. Not only will we have conclu-
sions to draw about how to describe the stability of the nonlinear structure against
thermal fluctuations at any given temperature but we will also derive time-dependent
equations that govern the evolution of the system in the presence of bath interactions.
Setting up a Langevin equation to describe the e�ect of thermal interactions in a
simple manner is our first task. Converting that stochastic equation into a partial
di�erential equation for the probability distribution function in the standard manner
is the second task. Our resultant Fokker-Planck viewpoint allows us to calculate a
Kramer’s escape rate addressing, directly, the question of thermal stability of the
nonlinear structure we study. It additionally presents us with a time-dependent den-
sity matrix equation with intriguing predictions such as the phenomenon of Hopf
bifurcations. We dedicate a section to e�ects that are observable in principle in a
fluorescence depolarization scenario.

This Langevin approach to the description of thermal e�ects begins (Grigolini
et al., 1989) with the incorporation of a stochastic or random force � (C) into the
evolution, specifically of the vibrational coordinate H, so that Eqs.(7.5) become now

3?

3C

= 2+@, (8.21a)

3@

3C

= �2+? � jHA, (8.21b)

3A

3C

= jH@, (8.21c)

3H

3C

+ �(H � ?) + � (C) = 0. (8.21d)

We have taken � (C), arising from thermal kicks received by the dimer from the
heat bath, to be proportional to the di�erence of terms appropriate to the two sites
�1 (C) � �2 (C), and to represent white Gaussian noise with vanishing mean value:

h� (0)� (C)i = 2�hH2
i4@X(C). (8.22)

Of importance are the physical assumptions that the noise is not colored, by which
we mean that the correlation of the forces is proportional to a X-function in time,
and that it is proportional to the relaxation rate � as well as to the equilibrium value
of the square of the displacement hH2

i4@ . In the absence of the interaction term in
Eq. (8.21d), that equilibrium value would be proportional to the temperature and
inversely proportional to the nonlinearity,

hH
2
i4@ =

2:⌫)
j

. (8.23)

We have assumed that the stochastic forces acting on the individual sites are uncor-
related with each other.
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8.3.1 Kramer’s Escape Time as Representative of Thermal Stability

Our application of the techniques developed over the years by various investigators,
but particularly by Grigolini and his collaborators through the use of the projection
formalism (Grigolini, 1989; Fonseca et al., 1985; Faetti et al., 1988), leads us to
focus on a Langevin set of equations rewritten to involve the quantity

I(C) = H(C) � ?(C).

Details may be found in the original publication (Grigolini et al., 1989) where it is
shown how three useful results can be obtained. The first is a Fokker-Planck equation
for the evolution of the probability distribution of the vibrational coordinate as well
as of the Bloch components of the quasiparticle. The second is a reduced Fokker-
Planck equation for the nonlinear dimer alone after elimination of the vibrational
coordinate. It governs the time dependence of the density matrix elements of the
quasiparticle with no reference to the vibrational coordinate. The third is an even
further reduced evolution equation for a slow variable that is an appropriate energy
in the system. That variable is proportional to

A (C) � (j/2)?2
(C) + j/2 + 1/2j.

The slow variable has been defined and discussed in the context of Eq. (7.28)
earlier and leads to the calculation of the Kramers escape rate. The first of the
two Fokker-Planck equations serves as an intermediate step in the derivation of the
second. This second equation describes the e�ect on the nonlinear structure that is
the dimer, produced by vibrations and the reservoir both of which are eliminated in
the evolution equation.

An excellent exposition of the standard apparatus of the first-time-passage for-
malism may be found in the work of Weiss (1967). Its application to our system
as carried out by Grigolini et al. (1989) has two outcomes. One is an approximate,
analytic expression for the Kramer’s escape time that is also especially convenient
for applications. The other is a more precise version of the same result with the
shortcoming that it can only be analyzed numerically. We plot both in the accompa-
nying Fig. 8.5, the solid (dotted) line being the numerical (analytic) prediction. Both
show Arrhenius behavior marked by essentially the same characteristic temperature
(about 0.5(+/:⌫) in the plot displayed). What this means physically is that, if our
nonlinear dimer is placed initially in one of the localized stationary states, it tends
to remain localized for temperatures below this characteristic temperature )2 . The
approximate but analytic expression for )2 is

)2 = constant
✓
(j/4) + (+

2
/j) �+

:⌫

◆
⇡ constant

✓
j

4:⌫

◆
. (8.24)

The system escapes if the temperature exceeds that value. The approximation on the
extreme right in Eq. (8.24) applies if the nonlinearity j is much larger than + .
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Fig. 8.5 Arrhenius temperature dependence of the escape rate for the system from its nonlinear
state plotted on a linear scale as a function of temperature ) , the units of rate and temperature
being, respectively, + and + /:⌫ . The solid line, which represents the numerical and more precise
result, corresponds to essentially the same characteristic temperature as the approximate but analytic
Kramers-like result as given by Eq. (8.24). Parameter values chosen for illustrative purposes are
� = 50, j = 10, in units of + . Reprinted by permission from fig. 1 of Ref. (Grigolini et al., 1989).
Copyright 1989 by American Physical Society.

Here is a physical description of what happens. Consider the quasiparticle local-
ized on one of the two sites initially at ) = 0 and assume that we have 2+ < j < 4+ .
The quasiparticle will perform oscillations between the two sites. The representative
point will ‘lose energy’ as a result of the non-infinite relaxation rate �. When this
‘energy’ decreases below the barrier-top value, the quasiparticle falls into one of
the two ‘wells’ and is practically localized around one of the two sites. The initial
conditions and the relaxation rate determine delicately which of the two sites is
selected for localization. The delicate nature of the selection is associated with the
interesting aspect of the right panel of Fig. 7.4. On further reduction of the ‘energy’
as the reservoir performs its function, the quasiparticle settles into the localized state.
These goings-on, described in Chapter 7 at the zero of temperature, are now modified
for finite ) . The quasiparticle will di�use as a result of thermal fluctuations and will
attain energies characteristic of thermalization with the reservoir. While the fluctu-
ations will be extremely slow below )2 , the barrier will be surmounted easily when
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the temperature exceeds )2 . To be kept especially in mind is that the temperature
dependence is Arrhenius (or activated) so that, quiet for temperatures below )2 , the
system ‘awakens’ at that characteristic temperature. Equilibration (equal population
at the two sites) occurs. The nonlinear entity is then destroyed.

8.3.2 The Ecumenical Equation and its Unification Capabilities

The analysis of the escape rate provided above is appropriate particularly at small
temperatures. Let us now describe what happens at arbitrary temperatures with
particular validity for high temperatures, following (Kenkre and Grigolini, 1993;
Kenkre, 1993). We have mentioned above that two Fokker-Planck equations were
derived following the calculation scheme set up by Grigolini for numerous similar
systems. The reduced version obtained after elimination of both the reservoir and
the vibrational coordinate governs the probability density f(?, @, A; C) that the three
Bloch components of the quasiparticle density matrix have values ?, @, A at time C is

mf(?.@.A; C)
mC

= !f(?, @, A; C), (8.25)

where the operator ! is given by
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In equilibrium, either side of (8.25) vanishes and the equilibrium distribution is
obtained to be, with #1 a normalizing constant,

f4@ (?, @, A) = #1 exp
⇥
�(+/:⌫)) [A � (j/4+)?2

]
⇤
. (8.27)

Using the notation

h 5 i =
π π π

3?3@3A 5 (?, @, A)f(?, @, A; C)

for any function 5 (?, @, A) of the Bloch vector components, we obtain from the above
Fokker-Planck equation,5

5 The full equilibrium distribution, including for the vibrational coordinate, is proportional to the
product of the f4@ (?, @, A ) given in Eq. (8.25) and the Gaussian factor exp [�(jI

2
/2:⌫) ) ].
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3h?i

3C

=2+ h@i, (8.28a)

3h@i

3C

= � 2+ h?i � jh?Ai +
2+j
�

h@Ai � Uh@i, (8.28b)

3hAi

3C

=jh?@i �
2+j
�

h@
2
i � UhAi. (8.28c)

A temperature-dependent expression for the dephasing rate U emerges approximately
but naturally from the formalism:

U = (2j/�):⌫) . (8.29)

While, as we shall see below, Eqs. (8.28) are remarkable in what they predict under
standard approximation procedures, they su�er from the same disease that plagues
contracted equations in the famous BBGKY kinetic hierarchy (Reichl, 2009; Balescu,
1975). Unless we decouple the products that appear, we have no way of solving these
equations as obtained because they are not closed. Factorization assumptions such
as h@Ai ⇡ h@ihAi are crude at best. In order to make progress, let us stay within the
factorization procedure but employ (Kenkre and Grigolini, 1993) a version that has
a slightly more sophisticated aspect (0, 1, 2 being integer exponents):
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This factorization assumes that, at any time, the thermal average of products of
powers of the Bloch components may be approximated by the products of the thermal
average of the respective powers plus a correction factor. The correction factor equals
the di�erence of the two quantities at thermal equilibrium. This subterfuge ensures
that the assumption is correct at thermal equilibrium even if the simple product
assumption is not generally valid.

Substituting (8.30) in (8.28) and dropping the angular brackets, we obtain

3?

3C

=2+@, (8.31a)

3@

3C

= � 2+? � j?A + (2+j/�)@A � U@, (8.31b)

3A

3C

=j?@ � (2+j/�)@2
� U(A � A4@). (8.31c)

The single di�erence between Eqs. (8.31) and what we would get if we had simply
applied a product assumption to Eqs. (8.28) is the replacement of A by its di�erence
from the thermal equilibrium value A4@ in the last (dephasing) term in (8.31c). One
might have expected ?4@ and @4@ also to appear. However, they are absent from
the evolution because they vanish identically, the first because of symmetry, i.e.,
degeneracy of the dimer, and the second from Eq. (8.31a) coupled to the fact that
time derivatives vanish in equilibrium.
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What evolution equation would we get if we generalize Eqs. (8.31) through no
more than an inductive leap to apply to an infinite chain of sites <, = etc., making
sure only that they reduce naturally to simpler evolution equations that we believe in
as providing an appropriate description? The answer to this question may be found
in a suggestion made in (Kenkre, 1993),

8
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=[+ , d]<= � j(d<< � d==)d<=

� 8
j

�
d<= ( [+ , d]<< � [+ , d]==) � 8U (1 � X<=)

�
d<= � d

4@

<=

�
, (8.32)

and given the appellation ‘the ecumenical equation’.6 This was in an article I wrote
in celebration of Al Scott’s research.

The reader is invited to reexamine Eq. (1.6) that was presented in Chapter 1
and to realize that the ecumenical equation (8.32) is the augmented form that that
density matrix equation adopts when opened to heat reservoirs and prepared for
stochastic activities through the introduction of dissipation and fluctuation. In the
augmented form, it incorporates non-infinite relaxation and thermal interactions with
the reservoir and is capable of resolving the competition and conflicts of nonlinearity
and damping, or of fluctuation and dissipation. Indeed, it unifies the description of
all those e�ects in one fell swoop.

It should be remembered that the subject under investigation is the dynamics of a
low or intermediate mobility quasiparticle under strong interactions with vibrations.
Examples could be a light interstitial such as a muon or proton in a metal; or a vi-
brational or electronic excitation in a polymer; or even an electron in a narrow-band
material. The d in the equation would be the density matrix of the quasiparticle, the
matrix elements taken in a set of Wannier localized states or a similar representa-
tion. The four terms on its right hand side can be said to arise, respectively, from
intersite transfer, nonlinearity stemming from interactions with vibrations, finiteness
of vibrational relaxation (nonadiabaticity), and thermal fluctuations. The ecumeni-
cal equation can be said to be the nonadiabatic version of the nonlinear stochastic
Liouville equation (SLE) employed by Tsironis et al. (1988) The latter is obtained
by adding ad hoc dephasing terms to the density matrix equation corresponding to
the DNLSE. It may be called the adiabatic version of a nonlinear version of the
original SLE introduced into exciton transport by Haken, Strobl, and particularly by
Reineker (see, e.g., (Haken and Strobl, 1973; Haken and Reineker, 1972; Kenkre and
Reineker, 1982)). See also a book of mine, Kenkre (2021) ,for a recent discussion
of the conceptual issues surrounding the SLE. A careful comparison of the two
nonlinear versions has been given in (Kenkre and Grigolini, 1993).

6 Calculations to be presented below do justify regarding Eq. (8.32) as ‘all-embracing’ and ‘all-
inclusive’, terms you will find ascribed to the word ‘ecumenical’ if you refer to the dictionary. I
must confess the suggestion for the term came from someone else, a friend whose name, alas, I
have, unforgivably, forgotten. I can assure you that I associate the terminology with a moment of
weakness when we were deeply embroiled in discussions regarding comparative religions. Luckily
perhaps, the name has not stuck.
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Fig. 8.6 Time evolution of the probability di�erence ? (C) in the dimer as governed by Eq. (8.31)
for initial occupation of a single site. Two separate processes, the formation of the self-trapped
state and its later destruction as a consequence of thermal fluctuations are seen clearly. Arrows on
the time axis indicate the di�erent time regimes. Parameter values in units of 2+ , which are also
used to mark time on the x-axis, are: nonlinearity j = 1.25, relaxation rate � = 3 and temperature
dephasing rate U = 4 ⇥ 10�3. The localized state value of ? seen in the plot is �

p
1 � (2+ /j)2

precisely according to theory. Reprinted by permission from fig. 1 of Ref. (Kenkre and Grigolini,
1993). Copyright 1993 by Springer Publishing.

For a dimer, the ecumenical equation is the set (8.31). For j = 0 = U, it describes
the trivial linear dimer; if j vanishes but U does not, it describes the damped linear
dimer; for finite j but infinite �, the nonlinear nonadiabatic dimer if U vanishes; a
relatively crude but interesting extension (Tsironis et al., 1988) of the nonlinear dimer
to dissipative situation if j is finite, � is infinite and U vanishes; and to the nonlinear
nonadiabatic dimer if j, � are both finite but U vanishes. We will now begin by
examining the unifying abilities of the equation. Let us first consider temperatures
so large that A4@ = tanh(+/:⌫)) vanishes.

Let us assume that the temperature is large enough () >> +/:⌫) to justify such
a neglect of A4@ and plot the probability di�erence ?(C) in a dimer if the governing
equation is (8.31) so that nonlinearity and finite relaxation are envisaged along with
initial occupation of site 1. We plot in Fig. 8.6 the time evolution for the parameter
values j = 1.25, � = 3, U = 4 ⇥ 10�3 all in units of 2+ . We obtain a unified de-
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Fig. 8.7 Time evolution of the probability di�erence ? (C) as in Fig. 8.6 with the same value of
the nonlinearity j = 1.25, but for di�erent values of other parameters (in units of 2+ ): much
larger relaxation rate � = 30 and smaller temperature dephasing rate U = 1.6 ⇥ 10�3. All three
phases of the evolution are clear: pre-trapping oscillations, formation of the localized structure, and
destruction of the state resulting in the equilibration between the two sites. Reprinted by permission
from fig. 3 of Ref. (Kenkre and Grigolini, 1993). Copyright 1993 by Springer Publishing.

scription of not only the passage (with oscillations) into the localized stationary state
(that corresponds to the value ?BB = �

p
1 � (2+/j)2 of the probability di�erence

exactly as theory would predict) but also of escape from that state caused by thermal
fluctuations so that the probability equilibrates between the two states.

The same two processes of self-trapping and escape from the self-trapped state
are visible in Fig. 8.7 for the same nonlinearity parameter as in Fig. 8.6 but for a
much faster relaxation rate � = 3. The relaxation rate is here larger by an order
of magnitude but the dephasing rate remains almost the same, U = 1.6 ⇥ 10�3.
Additionally, the pretrapping oscillations are also seen clearly. Arrows are displayed
on the time-axis marking the regions characterizing the various processes in both
plots.7

7 The interested reader should consult analysis and plots in (Kenkre and Grigolini, 1993) that
compare the old (adiabatic) SLE with the new (nonadiabatic) counterpart introduced here.
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8.3.3 Onset of Bifurcations and Limit Cycles

A striking consequence of the ecumenical equation that one can discover through
straightforward numerical exploration is that, if the temperature is not so large
that the new driving term A4@ vanishes, its e�ects can produce unexpected and
delightful consequences such as limit cycles and bifurcations (Kenkre, 1993).8 Ku�
was successful in determining that they were Hopf bifurcations and in providing a
satisfactory mathematical analysis. What we published as a result (Kenkre and Ku�,
1994) is explained in brief below.

We know from standard texts (see, for example, (Reichl, 2009; Balescu, 1975))
that

A4@ = tanh
✓
+

:⌫)

◆
⇡ tanh

⇣
j

�U

⌘
, (8.33)

where the first equality is a consequence of elementary equilibrium considerations9
of a quantum dimer and the second is based on an approximate description for U,

U ⇡
j:⌫)

�+
. (8.34)

For a large enough nonlinearity j, an increase in the dephasing rate U results
in surprising bursts of the probability di�erence at short times. The bursts recur
with a certain time period. Thus, observe that the initially localized dimer in Fig
8.8a (with parameter values j = 2+ = � and time C plotted in units of 1/2+)
first shows oscillations in its probability di�erence ?(C) that damp out within 30
time units signifying descent into its localized self-trapping state. This is followed
by destruction of that localized structure after about 200 units of time. Both these
processes are ones we have been seeing in the examples studied so far. If however,
the dephasing rate U which had been taken to be 0.002 in units of 2+ in (a), is
increased to 0.005, the surprise depicted in (b) of Fig 8.8 happens: a sudden burst
of ? occurs around C = 260 and soon dies out. Although not visible in the plot that

8 These results remained as curiosities in my notebook serving as no more than material for
intriguing remarks during talks until Marek Ku� was able to recognize the nature of the bifurcations.
9 A rather interesting observation made in Kenkre and Grigolini (1993) deserves mention here. The
equilibrium distribution in Eq. (8.27) leads exactly to

A4@ = coth(+ /:⌫) ) � (:⌫) /+ ) ,

not to the tanh function. This is surely expected from the fact that the quantum mechanical dimer
has been represented in our Fokker-Planck treatment as a dipole rotating in three dimensions
in the space spanned by the Bloch vector components. Although this Langevin function has the
same qualitative shape as the tanh function, they certainly di�er quantitatively. Where did this
discrepancy come from? The answer is that we have not used the second postulate of quantum
statistical mechanics, viz. the assumption of random phases, in our derivation of Eq. (8.27). That
derivation treats a classical bath in interaction with a quantum mechanical dimer. When the second
postulate is invoked through the construction of an ensemble, removing thereby the contribution of
the (random) phases, the Langevin function expression does collapse onto the quantum mechanical
tanh result.
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Fig. 8.8 The probability di�erence ? (C) of the quasiparticle localized initially on one site plotted
as a function of the dimensionless time 2+ C showing a number of di�erent processes. The earliest
is initial oscillations, followed by self-trapping and escape from the self-trapped state due to thermal
fluctuations. When the dephasing rate U is changed, bursts of ? (C) occur as explained in the text.
j = 2+ = � in all cases but U is varied. In units of 2+ it is 0.002 in (a), 0.005 in (b) and 0.01 in (c).
The increase in U makes the bursts more frequent and therefore visible. Reprinted by permission
from fig. 1 of Ref. (Kenkre and Ku�, 1994). Copyright 1994 by American Physical Society.

relates to (b), the bursts recur at larger times. On making U ten times larger as in (c),
the multiple bursts recurring periodically become clear because they emerge closer
to one another.

This prediction of the ecumenical equation is certainly worthy of note. Where do
the bursts come from? Do they occur in the evolution of all three Bloch components?



184 8 Thermal E�ects

Fig. 8.9 Phase plots of ? versus @, and ? versus A , showing the formation of limit cycles. The
left panel shows them at long times when they have been formed and the right panel at short times
during their formation. j = 2+ = � in all of them but the dephasing rate U has in units of 2+
specific values (a) 0.8, (b) 0.33, and (c) 0.01 in the left panel, and (a) 0.33, (b) 0.9, and (c) 3.5 in the
right panel. Modified by permission from figs. 5 and 6 of Ref. (Kenkre and Ku�, 1994). Copyright
1994 by American Physical Society.

In order to answer these and similar questions, it is helpful to prepare phase plots of
the Bloch components ?, @, A . We see what happens in such phase plots in Fig. 8.9
where they are displayed two by two.

The left panel in Fig. 8.9 shows the limit cycles at long times, thus, their formed
shapes. The right panel shows them at short times, i.e., as they are forming. We see
closed circular shapes in the ?, @ case and butterfly shapes in the ?, A case. Parameter
values are j = 2+ = � in all of them but U varies: (a) 0.8, (b) 0.33, and (c) 0.01 in
the left panel but (a) 0.33, (b) 0.9, and (c) 3.5 in the right panel. We have varied the
values to show di�erent situations.

What precisely do these phase plots signify? It should be clear that the quasipar-
ticle is in a dynamic steady state, tending to stay in that state forever as a result of
thermal energy exchange with the reservoir and of dissipation. If we return to time
evolution graphs and examine all three Bloch components, see Fig. 8.10, we note
more clearly the tendency for limit cycles to form.
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Fig. 8.10 Limit cycles forming in the time evolution of all three Bloch components. Parameter
values are j = 2+ = � and U/2+ = 0.33. Reprinted by permission from fig. 2 of Ref. (Kenkre
and Ku�, 1994). Copyright 1994 by American Physical Society.

8.3.4 Linear Stability Analysis

Standard stability theory applied around the solutions ? = ?4@ = 0, @ = @4@ = 0, A =
A4@ of Eqs. (8.31) leads, as shown in Kenkre and Ku� (1994), to the eigenvalues _±
and _3 of the linearization matrix. They are

_± =
1
2

"
j

�
A4@ � U ±

r⇣
j

�
A4@ � U

⌘2
� 4(1 + jA4@)

#
, (8.35a)

_3 = � U. (8.35b)

It is clear from an examination of these expressions that the dephasing rate U has a
damping e�ect that opposes the thermal driving of A4@ and that when the dissipation
is large enough, the former overtakes the latter. The explicit condition for this to
happen is
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U >

j

�
A4@ (8.36)

The critical demarcation value of U that separates the stable and unstable regions is
thus (j/�)A4@ . If U is large enough for the imaginary parts of the eigenvalues _±
to vanish, the approach of ? and @ to their equilibrium values is monotonic. This
occurs for

U >

j

�
A4@ + 2

p
1 + jA4@ . (8.37)

If U lies between the two demarcation values, i.e.,

j

�
A4@ + 2

p
1 + jA4@ > U >

j

�
A4@ , (8.38)

the real parts of _± continue to be negative but their imaginary parts do not vanish any
longer. Spiraling trajectories towards equilibrium in the phase plots are a consequence
as is visible in Fig. 8.9. The third eigenvalue, _3 = �U, governs the equilibration of
A . It is always real (and negative). Accordingly, for large enough time, the approach
along that direction is always monotonic.

The value
U� =

j

�
A4@ (8.39)

is clearly significant. We use the subscript � to emphasize that these are Hopf bifur-
cations. The real parts of the eigenvalues _± become zero at U = U� and positive for
even smaller values of U. The interplay of dissipation characterized by U and thermal
excitation measured by A4@ becomes subtle. The excitation sustains oscillations in
the system with non-diminishing amplitude and the equilibrium solution bifurcates
to a periodic kind. This is what justifies the identification with what is called a Hopf
bifurcation.

The reader might want to consult the book by Marsden and McCracken (1976) for
a general theory of Hopf bifurcation and our original paper for details of application
to the present system. It can be shown that the oscillation amplitude grows as
p
U � U� as the rephrasing rate departs from the Hopf bifurcation. The frequency

of revolution along the closed orbit is approximately given by the imaginary part
of _± at the bifurcation point U� . How the limiting closed orbit depends on U can
be gleaned by inspecting the left panel of Fig. 8.9. I recommend to the reader an
examination in detail of the simple but powerful analysis made available in (Kenkre
and Ku�, 1994).
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8.4 Bursts and Limit Cycles of Time-dependent Fluorescence
Depolarization

Let us now examine how the noteworthy predictions of bifurcation and limit cycle
phenomena that we have noted could be observed at least in principle in the laboratory
in the context of fluorescence depolarization.10

Fig. 8.11 Limit cycles in the fluorescence depolarization arising from thermal fluctuations interact-
ing with nonlinearity. The left panel shows plots of 5 (C) for four values of the dephasing rate U in
units of 2+ : (a) 0, (b) 0.01, (c) 1, (d) 4. Respectively, we see straightforward evolution towards the
stationary state, removal of the excitation from that state by thermal fluctuations, limit cycles that do
not ever decay on account of the combination of nonlinearity and dissipation, and the destruction
of the limit cycles from the dephasing rate crossing a threshold. Other parameters: q = 0 deg,
j/2+ = 2, and �/2+ = 1. The right panel shows the limit cycles di�ering when you change the
initial polarization angle q. In (a) it is 6 deg and in (b) it is 36 deg. In units of 2+ , U, �, j are 1,
2, 1 respectively.Reprinted by permission from figs. 1, 2, 3, 4 of Ref. (Kenkre, 1994c). Copyright
1994 by the American Chemical Society.

The reader is already familiar with the experiment from the detailed discussion
given in Section 3.3 in this book. I found it a simple matter to incorporate the anal-
ysis of (Kenkre and Ku�, 1994) into a fluorescence depolarization context because
the experimental observable 5 (C) defined in Eq. (3.8) is given by a simple linear
superposition of two of the nonlinear dimer Bloch components via Eq. (3.10). The

10 This was a topic I had learnt long ago from Robert Knox during a collaboration with him
and his then-student Talat Rahman (Rahman et al., 1979). Bob has written about the experiments
and various theoretical aspects of the phenomenon in publications with his other students as well
including in (Knox and Gülen, 1993).
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coe�cients in the superposition are trigonometric functions of the initial angle of
inclination q made by the polarization of the incident light with the induced dipole
moment. The straightforward analysis I presented in a festschrift article written in
honor of Raoul Kopelman showed interesting possibilities concerning thermally in-
duced limit cycles (Kenkre, 1994c). For this book, I have combined all four figures
of that publication into a single one with two panels, Fig. 8.11 here, to focus on the
findings.

For the purposes of the calculation that produces the plots displayed, we take the
nonlinearity j and the relaxation rate � to be 4+ and 2+ , respectively. Let us start by
noticing that in (a) of the left panel, for which the angle of initial inclination of the
polarization is q = 0 deg, we see the consequence on 5 (C) of the fact that the system
oscillates and falls into its stationary state. The dephasing rate U for this case is 0.
If we change the value of U/2+ to 0.01, we see the consequence of the destruction
of the nonlinear state by thermal fluctuations. On making U equal to 2+ , we see
limit cycles in 5 (C). This is case (c). The degree of fluorescence depolarization
falls into a periodic oscillation that persists forever. This is perhaps the most striking
observation. Dissipation and thermal fluctuations join hands to produce this dynamic
state that lives for all time. On increasing U/2+ still further, making it 4 in the case
(d) shown, the limit cycle is destroyed.

The left panel thus shows the varied e�ect of increasing the dephasing rate U
from 0 to higher values leading to escape from the localized state, limit cycles and
their destruction.

In the right panel, we see the simple consequence of changing the angle of initial
inclination of the plane of polarization of the incident light. In both cases there are
limit cycles but in (a) of the right panel we see a single oscillation while in (b) we see
a structure with two oscillations both repeating themselves forever. The inclination
q is 6 deg in (a) but 36 deg in (b).

8.5 Remarks about the Non-equilibrium Considerations of
Thermal E�ects

If I were a reader (rather than the author) casting my eyes for the first time on the
contents of this Chapter, I would come away with two questions plaguing me. Are
the Davydov solitons that made such a splash in the literature a few decades ago
(for very understandable reasons given they were invented to bridge serious gaps in
our understanding of biological systems) really stable against thermal fluctuations at
biological (for instance room) temperatures? And, given the remarkable predictions
in the second part of the Chapter about bifurcations and limit cycles, how frequently
should we expect to see them actualized in experimental observations in systems we
encounter?

I have already washed my hands of the first question during the introductory
discussion. I find the Davydov system too complex for me to be able to say authori-
tatively one way or the other. I know of respectable scientists even now holding on
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fast to their opinion that Davydov solitons have no chance to survive at temperatures
that matter in biology. I know of other respectable scientists who, as vehemently,
believe the opposite.11

The second is an important question because on one hand the predictions of the
ecumenical equation are striking. On the other hand, the assumptions we have had
to make, typified by the cutting of the hierarchy via factorization procedures, should
make us suspicious of the connection of the final form of the equation to the original
point of departure. Of course, such a state of a�airs is met with in the context of much
more venerable equations in physics such as the Master equation and the Boltzmann
equation although this is not always openly recognized. So should we consider the
equations as actually derived or as appearing on a monolith outside our window, or
encountered near a burning bush, or heard through what the Hindus call Akashvani
(pronouncement from the heavens)? Honestly I do not know. My goal regarding
both questions is modest. As to the first, I describe procedures and leave the reader
to make her own applications and draw her own conclusions. As to the second, I
remain even more silent. Inwardly, I feel the predictions are so intriguing that they
are well worth the ingenuity of experimental probers even if the approximations used
by theorists in arriving at them are crude.

8.6 Chapter 8 in Summary

Description of thermal e�ects in the dynamics of nonlinear structures occupied us
in this Chapter. Questions of the thermal stability of the Davydov soliton served
as a backdrop for the investigations although they were not the focus of the analy-
sis. The conflicting situation in the literature about the fate of that soliton, originally
suggested as the carrier of the energy released by the hydrolysis of adenosine triphos-
phate, was described as an introduction and the rest of the Chapter was dedicated
not to any resolution of that issue but to provide two di�erent modes of description,
the first based on equilibrium considerations and partition function analysis and the
second based on a Langevin formulation and a Fokker-Planck analysis. In the first,
a magnetic analogy was utilized to set up a localization parameter which would
measure the nonlinearity in the structure that develops in the system. It was shown to

11 David Brown, Katja Lindenberg, Bruce West belonged in the old days to the former group while
Leonor Cruzeiro, Chris Eilbeck and Peter Christiansen belonged to the latter group. Paolo Grigolini
wondered whether Davydov solitons existed at all even at zero temperature while Bob Knox worried
about how they could be launched, i.e., put into the system realistically. Yet other colleagues smiled
enigmatically when I asked for clarification. Several of these scientists had been my collaborators
and I could swear by their thoroughness, careful scrutiny and inventiveness. The methods used by
some of them in coming to their conclusions were to me rather involved. I had been myself quite
unable to come to an opinion and it is not for want of trying. I do not know about the opinions held
at the present moment by the investigators I have identified in this footnote but, for the interested, I
mention a relatively recent review authored by Cruzeiro (2009), a scientist highly versed in Monte
Carlo methods. She collaborated with me on some of these questions in the past but has opinions
that have often diverged from mine on these matters.
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have a tendency to both increase and eventually decrease as the system temperature
increased. Eventual Boltzmannization12 ensured a destruction of the nonlinear struc-
ture at high enough temperatures but the behavior at lower temperatures could be
complex. The description was first developed for a two-site system interacting with a
single vibration but then extended to a translationally invariant system of an arbitrary
number of sites interacting with a single representative vibrational mode and then
to a two-site system interacting with any number of vibrational modes. Results were
shown to emerge as expected. In the second part of the Chapter, standard methods
were applied to start with a Langevin picture and develop a Fokker-Planck equa-
tion. The ensuing density matrix equation was shown to be capable of describing
in a unified manner, nonlinear behavior known for an adiabatic system, the onset
of dissipation from non-adiabacity (finite relaxation), and even of predicting novel
phenomena such as bifurcations and limit cycles. These were analyzed and it was
shown how they could arise in observations of fluorescence depolarization. The first
part of this Chapter, which dealt with equilibrium considerations, showed expected
behavior. The second, which addressed non-equilibrium phenomena and invoked
some approximations that could be considered a bit bold, presented us with e�ects
that were surprising and certainly interesting.

12 I realize this term will fill the minds of many respectable users of the English language with ire
and wrath but it does explain the process succinctly.



Chapter 9
Microscopic Origin Issues about the DNLSE for
Polarons

The microscopic foundation of the DNLSE for polarons is the subject matter for
this Chapter 9. Let us follow here a format opposite to the one adopted for Chapter
8 in that we will focus first on the microscopic origin issues for the simplified
system central to the book: quasiparticle moving on a dimer in strong interaction
with vibrations. Only at the very end of the Chapter will we come to the Davydov
soliton backdrop and mention, in highly compressed form, the questions that were
causing profound splits among investigators in the 1980’s and 1990’s about whether
the Davydov soliton was really a consequence of the quantum mechanics of the
biological system in which it was thought to exist.

The DNLSE for spatially extended systems, as well as for small systems that
is the subject matter of the present book, has been for long supposed to be the
consequence of strong electron-phonon (generally carrier-phonon) interactions in
crystals. The word ‘carrier’ here covers, additionally, quasiparticles such as an exciton
or a vibron. The topic of carrier transport under such conditions has been investigated
in multiple ways over the years–long before Davydov suggested solitons for his
purpose in biological systems. The theory has been developed simultaneously and
at di�erent times, without intercommunication in di�erent groups within condensed
matter physics. For instance, some know it as constructed by Lee, Low, Pines;
others by Firsov, Kudinov. Some have learnt it from publications of Holstein and
Fröhlich; others from textbooks by Haken and Mahan.1 My own first education in the
theory of such systems happened in the context of excitons in molecular crystals and
photosynthetic systems. I learned the many polaronic tricks of the trade often from
the published work of Robert Silbey with his collaborators such as Munn, Grover,
Rackovsky and Yarkony (Silbey, 1976; Silbey and Munn, 1980; Grover and Silbey,
1971; Rackovsky and Silbey, 1973; Yarkony and Silbey, 1977).

Prior to addressing the validity issues of the microscopic derivation of semiclas-
sical equations of motion including the DNLSE in the polaron context, let us briefly
reacquaint ourselves with the dressing transformation (Grover and Silbey, 1971;

1 It is practically impossible to remove the parochial element of where we acquired such instruction
and I apologize in advance to those who know it well but tend to associate it with other sources.
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Kenkre, 1975) and the memory function procedure (Kenkre and Rahman, 1974;
Kenkre, 1975) applied specially to the dimer in strong interaction with vibrations.
In addition to the original papers cited, two books, a recent one (Kenkre, 2021) and
an older one (Kenkre and Reineker, 1982), might be of assistance to the reader for
details.2

9.1 Preliminary Concepts

Let us begin with the prototypical Hamiltonian in Eq.(4.1) and write it for a two-site
resonant system as in section 2 of Chapter 8 as

� = +Â + 6l?̂Ĥ +
1
2
l

⇣
Ĥ

2
+ ĉ

2
H

⌘
. (9.1)

The first term describes the quasiparticle, the third the vibration, and the second
stands for the interaction between them. While the interaction can be treated pertur-
batively if the coupling constant 6 is small, it presents a problem if it is large.

9.1.1 Dressing Transformations and the Memory Function

The crucial technique for such a situation is to apply a transformation that goes under
the name of the displaced-oscillator transformation to the bare operators, say 0̂, to
convert them into transformed or ‘dressed’ operators �̂, through the prescription

�̂ = 4(�86bcH ?̂)
0̂4

(+86bcH ?̂)
. (9.2)

Our notation here is to capitalize the respective bare operator to represent the dressed
(transformed) operator. The connection between the bare operators appearing in the
Hamiltonian (9.1) and their dressed versions is then

2 Having spent years in the subject of carrier transport under strong interactions with vibrations
before I had heard of the Davydov idea, I had a bit of a surrealistic experience when I attended
conferences and seminars focused on that idea. People would rehash old concepts and fight ancient
battles in the subject matter as if they had been invented anew, often seemingly unaware of what was
known, believed, or practiced in the wider community. This is not uncommon. We typically like to
think and calculate (rather than read) when we take a fresh look at di�cult problems. Surely, it is
unreasonable to expect familiarity with science discussed in all branches of our field. Nevertheless,
the large disconnect in the Davydov soliton community with general polaronic practice was a
bit disorienting and practically inconvenient. The leaders in the field, Al Scott in particular, who
organized opportunities for scientists with multiple backgrounds to meet and tackle the Davydov
issue in a complementary fashion, were genuinely interested in resolving questions in the field.
Despite this, I must confess that shades of the tower of Babel I witnessed in the conferences despite
the great ingenuity and creativity of participating researchers (and especially their willingness to
learn and cooperate) left an impression. It has motivated me to include a few essential items from
polaron knowhow in the beginnings of the present Chapter.
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?̂ =%̂, (9.3a)

@̂ =&̂ cos (26b⇧H) � '̂ sin (26b⇧H), (9.3b)

Â ='̂ cos (26b⇧H) + &̂ sin (26b⇧H), (9.3c)

Ĥ =.̂ � 6%̂, (9.3d)

bcH =b⇧H . (9.3e)

In terms of the dressed operators, the Hamiltonian can be expressed as3

b� = +
h
'̂ cos (26b⇧. ) + &̂ sin (26b⇧. )i + 1

2
l

⇣
.̂

2
+ b⇧2

.

⌘
�

1
2
6

2
l
b1. (9.4)

The transformation derives its name from Eq. (9.3d): it shows that the dressed
oscillator has its equilibrium position displaced by the coupling constant 6 times the
probability di�erence of the quasiparticle. We also see from a comparison of Eq.
(9.1) and Eq. (9.4) that the frequency of the dressed oscillator is the same, l, as
that of the bare counterpart. The trigonometric functions signify clouds of oscillator
excitations (bosons) surrounding the particle. The last term of Eq.(9.4) shows a
lowering of the energy proportional to the product of the square of the coupling
constant 6 and the frequency l, i.e., to 62

l. Except for a multiplying constant 2, this
is the nonlinearity parameter j that we have encountered throughout the book. The
first term of Eq.(9.4) shows that, in contrast to the first term on the right side of Eq.
(9.1), the transfer in the dressed case is accompanied by exchanges of phonons in the
‘virtual cloud’. The reader acquainted with more standard expositions of the dressing
transformations may find our discussion specialized for a dimer a bit unfamiliar. This
form has been used in our group in Kenkre et al. (1996a), Kenkre (1998a) and Kenkre
and Giuggioli (2004) and has also appeared in the work of others, for instance, (Steib
et al., 1998).

The role of the transformation is to account for a large part of the e�ect of the
coupling term (second in Eq.(9.1)) in the displacement of the equilibrium of the
dressed oscillator. The transfer is then treated through a perturbation analysis of the
first term on the right side of Eq.(9.4). One can calculate Fermi Golden Rule rates

of transfer using +
h
'̂ cos (26b⇧H)i as the interaction but our method consists of

calculating memory functions, instead.
For the purpose, we use the projection operators of Zwanzig (1964) in a form

specialized to trace over the vibrations as well as diagonalize in the site-representation
for the dimer and produce, without any approximation,

3?(C)

3C

+ 2
π

C

0
3BW(C � B)?(B) = I(C). (9.5)

3 This reduction is exact for a dimer because %̂2 equals the identity operator 1̂. In extended systems
it is customary and necessary to neglect the term proportional to %̂2, the justification requiring
either diluteness or the nature of the carrier if it is a fermion.
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Flexibility in the choice of projection operators (see, e.g., (Kenkre, 2021)) allows
us to make I(C) = 0 identically, if the initial state is diagonal in the dimer site-
representation for the quasiparticle and a product of the quasiparticle and vibrational
states.

Equation (9.5) is an integrodi�erential equation for the 2-number ?(C) that is
the probability di�erence of the two sites. Features of the memory function W(C)

determine its evolution. Given that the dressing transformation takes into account a
large part of the e�ect of the strong coupling, the memory is calculated perturbatively
in orders of the left-over interaction between the dressed states. Details may be found
in numerous places, especially in Kenkre (1975), but also explained in a tutorial
fashion in Kenkre (2021). The result (Kenkre and Rahman, 1974; Kenkre, 1975) is

W(C) = 2+2Re[4⌘ (C)�⌘ (0) ] . (9.6)

If the number of vibrational modes is arbitrary rather than 1 as in our simplified
system here, the ⌘(C) in Eq.(9.6) is given by (Kenkre and Rahman, 1974)

⌘(C) = 2
’
@

6
2
@
[exp(�8l@C + 2=@ cos(l@C)], (9.7)

but reduces in our single-mode zero-temperature case to

⌘(C) = 262
[exp(�8lC] . (9.8)

The @ in Eq. (9.7) is a mode label (has nothing obviously to do with the second
Bloch vector component) that is summed over, and =@ = [exp(Vl@) � 1]�1 is the
Bose factor with V = 1/:⌫) and ) the temperature.

This means that for our single-mode system at ) = 0, the probability di�erence
?(C) is explicitly given, for the initial condition stated, by the solution of

3?(C)

3C

+ 4+2
π

C

0
3B 4

�262
[1�cos l (C�B) ] cos[262 sinl(C � B)]?(B) = 0. (9.9)

9.1.2 Success of the Memory Approach

How good is the memory method for accuracy of calculation? The memory procedure
had been considered a successful approximation technique when it had been used to
address a long-debated puzzle involving experiments on naphthalene. Specifically,
the data concerned the temperature dependence of the mobility of photo-injected
holes in naphthalene. A thorough investigation carried out by Andersen and col-
laborators of about a dozen theoretical attempts to explain the data showed (see,
e.g., Andersen et al. (1983, 1984)) that they were all reasonable but flawed. The one
exception (Kenkre et al., 1989) used the memory procedure. The reader is referred to
a detailed discussion of this use of the memory method (as well as of the naphthalene
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story) in the book by Pope and Swenberg (1982, 1999) where, on pages 968-971 (of
the 2nd edition) in particular, the matter has been discussed.

The Hamiltonian used for the naphthalene system was as given in Eq. (4.1) and
described a spatially extended crystal, the carrier being in strong interaction with
many modes of vibration. The relevant modes were librational. The memory function
was calculated explicitly and the velocity autocorrelation function of the carrier was
deduced from it. This autocorrelation function was integrated to get the mobility.
The reader is referred for an explanation to the original papers or to Chapter 6 of my
recent book (Kenkre, 2021) where a pedagogically oriented exposition is provided.

As a visual reminder of how successful the theory based on the memory method
was in providing an explanation of the temperature dependence of the mobility in
naphthalene, Fig. 9.1 displays the theoretical fits.

Fig. 9.1 Comparison of the observed mobility data of photo-injected holes in naphthalene in the
three directions 1, 1, 3, represented by (a), (b), (c), respectively, with the theory based on the
memory function procedure, indicating a successful explanation. Reprinted with permission from
fig. 2 of Ref. (Kenkre et al., 1989). Copyright 1989 by American Physical Society.

However, the question remains: how good is the memory method for accuracy
for the simple system of a dimer in interaction with a single vibrational mode at
zero temperature? In order to answer this question, it is straightforward to solve
the integro-di�erential Eq. (9.9) for any given values of the coupling constant 6,
oscillator frequency l and intersite transfer interaction + .
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Fig. 9.2 Comparison of the exact (i.e., obtained numerically from the quantum dynamics) and
approximate (i.e., obtained via the memory procedure) evolutions of the probability di�erence
? (C) . They are denoted, respectively by a dashed and a solid line. The upper panel uses one set of
parameter values while the lower panel uses a di�erent set. Both are as indicated. The agreement
of the exact and approximate predictions is not perfect but is impressive. Modified by permission
from figs. 2 and 3 of Ref. (Kenkre et al., 1996a). Copyright 1996 by American Physical Society.

Fig 9.2 displays4 a comparison of the solution obtained from such a memory
approximation (solid line) to the exact evolution (dashed line) obtained numerically

4 The additional trace in the lower panel labeled ‘standard semiclassical’ is not relevant to the
present discussion and will be discussed later.
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from the given Hamiltonian. The plot shows the results for two sets of parameters,
one in the upper panel and one in the lower panel (as indicated) and for an initial
condition localized on one site for the quasiparticle.

The details of the vibrational initial condition as well as of the numerical procedure
used will be explained in the sequel. We see that the agreement is impressive both
in the upper panel where ? varies from 1 to 0.9 and in the lower panel where it has
a much wider span from 1 to 0.5. Not only does the approximation stay close to the
exact evolution in an overall sense but tends, quite remarkably, to change curvature
and produce humps at or near the ones in the exact curve.

9.1.3 Nature of the Memory Function and Hierarchy of Time Scales

We have seen that Eq. (9.5) shows how the probability di�erence ?(C) emerges from
the memory function. The memory function itself, given generally by Eq. (9.6),
becomes, for a single mode at zero temperature,

W(C) = 2+2
4
�262

(1�cos lC) cos (262 sinlC). (9.10)

What can we learn from an inspection of the right hand side of (9.10)?

We notice a hierarchy of time scales. We can identify three characteristic times as
reciprocals of l, 6l and 62

l. Their presence in the memory is particularly apparent
in the limit of small l. In this limit, the memory becomes a product of a cosine of
a period proportional to the 262

l, the quantity that we have called the nonlinearity
parameter j, and a Gaussian in time of width proportional to the reciprocal of 6l:

W(C) ⇡ 2+2
4
�6

2
l

2
C
2
cos (262

lC). (9.11)

This means that the memory decays in a time equal to the reciprocal of 6l. And
that, within the decaying envelope, there are rapid oscillations whose period is
characterized by the reciprocal of 62

l.
The behavior of the memory function is clear from Fig. 9.3 where the ratio of the

memory function to its value 2+2 at the origin of time is plotted as a function of time
in units of 1/+ for two parameter value sets as shown. For constructing the plots,
we use the exact expression (9.10) rather than the low-l approximation (9.11). The
oscillation within the envelope and the decay are visible for either set but we also
see an interval in time in which the memory function remains constant at the value
of zero before recurring. This last feature is responsible for similar constant periods
in the evolution of the probability di�erence ?(C). We call those the silent runs.5

5 I seem to remember it was some submarine movie that suggested to me that terminology. My
collaborators attempted to object but I was unrelenting and they were kind to me.
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Fig. 9.3 The time-dependence of the memory function itself showing a hierarchy of time scales.
Plotted is the ratio W(C)/W(0) of the memory function to its value at C = 0, as a function
of the dimensionless time + C for two sets of parameter values, as indicated in the left and right
panels. Note the decay, the oscillation within the envelope, the period of constant value at 0, and the
recurrence. See text. Modified by permission from fig. 2 of Ref. (Kenkre et al., 1996a). Copyright
1996 by American Physical Society.

9.2 Criticism of the Semiclassical Treatment/DNLSE, Numerical
Confirmation, and Timescale Hierarchy

Through several papers written in collaboration with his students and colleagues
(Vitali and Grigolini, 1990; Vitali et al., 1992; Bonci et al., 1993; Vitali et al.,
1994), Grigolini presented an incisive criticism of the semiclassical procedures then
current along with the use of the DNLSE.6 They studied our dimer quasiparticle in
strong interaction with a vibrational mode by analyzing the equivalent spin system
microscopically, pointed out the connection to work in other fields and generally
called into question assumptions and procedures that were being followed in the
literature.

Rather than grappling with the analytic approximations (such as Hartree) and
procedures (such as Wigner function formulations) discussed by Grigolini and col-
laborators, I thought a direct comparison with controllable numerical solutions of
the simple quantum system would help in getting to the heart of the matter quicker.
Following such a procedure resulted (Salkola et al., 1995; Kenkre et al., 1996a) in

6 He had been earlier an active collaborator of mine on thermal aspects of the DNLSE work that
has been described in Chapter 8 of this book.
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the firm validation of some of the issues raised by Grigolini and collaborators. We
begin the discussion in this Section.

An important point made by Grigolini and his collaborators was about the ef-
fect that l/+ , the ratio of the vibrational energy to the intersite transfer interaction
would have on the validity of the semiclassical approximation representing the ac-
tual quantum evolution of the quasiparticle-vibration system. They pointed out that
the approximation gets worse as the ratio becomes large and that, consequently, the
slaving idea as usually put forward would not work. This invalidates the often used
argument that the vibrations are so fast that they adapt, close to instantaneously, to a
slower quasiparticle. Surely, one can have a situation starting from the semiclassical
equations wherein the quasiparticle moves slowly and thereby slaves the faster vibra-
tions that adapt. However, Grigolini et al argued that the replacement of the quantum
evolution by its semiclassical counterpart itself requires small l/+ . The two suppo-
sitions needed to arrive at the DNLSE, they argued, are thus in contradiction. They
suggested that the DNLSE is therefore not to be trusted.

My plan to use a direct quantum mechanical calculation to test this conclusion
was based on calculations that I had done in the early 1970s to study the comparative
validity of two approximation schemes, one carried out by Silbey and collaborators
and the other by my collaborators and me on the basis of the memory method.
The detail of those calculational schemes is not relevant to the present discussion
although the reader will find a thorough exposition in appropriate references (Kenkre,
1975; Kenkre and Reineker, 1982; Kenkre, 2021). What is relevant is that, when our
system is stripped to its essentials, its evolution can be calculated by solving the
Schrödinger equation easily by numerical methods. The method consisted in writing
out the amplitude equations corresponding to the Hamiltonian (9.1), taking a finite
number of vibrational levels to approximate the actual semi-infinite situation and
diagonalizing the (finite) Hamiltonian matrix, by brute force if necessary, to obtain
the evolution.

Thus, if 2',< is the amplitude that our system under investigation has the quasi-
particle on the site ' (1 or 2), and the oscillator whose displacement is the di�erence
in the displacements of the two sites is in the oscillator number state < (<=0, 1,
...1) with energy (< +1/2)\l, the following equations describe the evolution of the
system among the vibrational states <, =, etc. with the quasiparticle on site 1 or 2:

8

321,<

3C

=
✓
< +

1
2

◆
l21,< ++22,< + 6l

⇣p
< + 121,<+1 +

p
<21,<�1

⌘
, (9.12a)

8

322,<

3C

=
✓
< +

1
2

◆
l22,< ++21,< � 6l

⇣p
< + 122,<+1 +

p
<22,<�1

⌘
(9.12b)

for < > 0, and

8

321,0

3C

=
✓
1
2

◆
l21,0 ++22,0 + 6l21,1, (9.13a)

8

322,0

3C

=
✓
1
2

◆
l22,0 ++21,0 � 6l22,1. (9.13b)
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for< = 0. The square root factors arise from the matrix elements of the displacement
among harmonic oscillator states and the di�erence in sign in the terms multiplying
6l stems from the fact that the interaction must scatter ‘Bloch’ states of the dimer.

The numerical approximation consists in taking the upper limit of integers < to
a finite number # � 1 instead of to what is actually correct, which is infinity. The
practical way to implement this is to do the calculation for a finite # and then increase
# until there is no discernible change in the results. The probability di�erence is
given by

?(C) =
#’
<=0

⇣
|21,< |

2
� |22,< |

2
⌘
. (9.14)

In our practical computations we found convergence much before # came close to
100 so that we never had to diagonalize matrices larger than 200 ⇥ 200.

Fig. 9.4 Schematics of the numerical program to obtain the evolution of the probability di�erence
? (C) labeled as ‘exact’. See text. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

This was the program (see the schematic depiction in Fig. 9.4) that I had followed
for the comparative study of the two competing perturbation methods used after the
dressing transformation.7 It had been carried out by hand for # = 5 then and has
been mentioned in various perturbation discussions, e.g., in Kenkre and Reineker
(1982) and in section 4.1 of Kenkre (2021). It was also the precise program that I

7 It is mentioned explicitly at the end of the paper Kenkre (1975) as a Note Added in Proof.
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had suggested to Raghavan8 to implement numerically when we were surprised to
learn from Salkola and Bishop from Los Alamos that they had just achieved not only
this calculation but had gone a good deal further in the understanding of the system.
We were able to pool results and publish almost half a dozen papers together on the
subject matter, clarifying the issues quite thoroughly.9

Salkola et al. (1995) showed unequivocally that not only were Grigolini and
collaborators correct in asserting that the semiclassical approximation was better
(worse) for smaller (larger) values of l/+ but that there was a well-defined non-
trivial limit in which semiclassical dynamics coincided with quantum dynamics. In
addition, they identified a clear hierarchy of time scales over which the quantum
dynamics can be rationalized, time scales that can be related to counterparts in the
memory function W(C) quite simply.

That all was not well with the semiclassical approximation for high frequencies of
the vibrations (l/+ >> 1) was known already earlier than the Grigolini papers, for
instance to Brown et al. (1987), and independently later, e.g., to Steib et al. (1998).
The ‘massive oscillator limit’ that Salkola et al. (1995) identified as being one in
which the semiclassical equations were perfectly valid was l ! 0, 6 ! 1 with
262

l = j, a constant. The hierarchy of time scales they mentioned was associated
with the fact that, for appropriate parameters, the probability evolution exhibits rapid
oscillations on a time scale we may call gj, a decay on a time scale gW , a revival
on the time scale g�, and an overall oscillation on the scale g) . These are all visible
in the exact evolution (dashed line) in both panels of Fig. 9.2. In the limit of small
l and large 6, three of these four time scales can be seen very clearly as being
gj ⇡ 1/62

l, the time characteristic of the oscillations within the recurring envelope,
gW ⇡ 1/6l, the time extent of the envelope (burst), and g� ⇡ 1/l, over which the
revivals occur after each silent run. These three are particularly obvious in Fig. 9.5
which we show for a situation with low oscillator frequency l and high coupling
constant 6: l = 0.1+ , j = 262

l = 6+ .
The fourth time scale, not seen in the plot, marks the tunneling of the quasiparticle

from one site to the other and is of the order of 46
2
/+ . In the massive oscillator limit

l ! 0, 6 ! 1 with 262
l = j, the vibrational distortion is essentially frozen

from the viewpoint of the quasiparticle and so we have a static energy mismatch
proportional to j. In this limit, the memory function is 2+2 cos jC. The probability
di�erence can be said to be, (for initial placement on one of the sites),

?(C) =
✓

j
2

j
2 + 4+2

◆
+

✓
4+2

j
2 + 4+2

◆
cos

✓
C

q
j

2 + 4+2

◆
. (9.15)

8 Srikanth Raghavan was a gifted student with quick wit and a highly developed sensitivity to play
upon words. I could not decide which I enjoyed during our time together more, his sense of humor
or his enthusiasm and work ethic as well as his sharpness in physics matters. We spent oodles of
time discussing P. G. Wodehouse during his thesis work with me. The reader will meet him again
in Chapter 10 in connection with his brilliant work with Smerzi, Shenoy and others on tunneling in
Bose-Einstein condensates.
9 The brief four-way collaboration with Markku Salkola, Alan Bishop, and Srikanth Raghavan
around 1995 was one of the most enjoyable and productive ones that I remember. Srikanth and I
learned much from our Los Alamos collaborators.
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Fig. 9.5 Three of the four time scales in the time evolution of ? (C) , the probability di�erence:
gj , gW , and g�. The tunneling timescale is not visible. The time scales indicated are clear in this
low-frequency high coupling constant situation as 1/62

l, 1/6l, 1/l, respectively. Parameter
values, as shown on the plot, are l = 0.1 and j = 262

l = 6 in units of + . Compare Fig. 9.3 that
displays memory functions (rather than ? (C) that is shown here) and uses another set of parameter
values. See text. Copyright Vasudev M Kenkre, 2021. All Rights Reserved.

What does this equation tell us about the evolution? The quasiparticle is self-trapped:
oscillations of frequency proportional to

p
j

2 + 4+2, which is approximately equal
to j for the case j >> + , occur about a mean value j2

/(j
2
+ 4+2

).
The tunneling time scale 46

2
/+ can be understood easily also. It is the reciprocal

of the tunneling matrix element +4�6
2

after the transformation. The matrix element
is reduced from its bare value + because of the reduction in overlap.

Why we use the phrase ‘massive oscillator limit’ should be clear from the fact that
the oscillator mass ` appears as 6l / `

�1/4 andl / `
�1/2. The limitl ! 0, 6 ! 1

with 262
l = j may be looked upon as the limit ` ! 1.

The correctness of the warning (Brown et al., 1987; Vitali and Grigolini, 1990;
Vitali et al., 1992; Bonci et al., 1993; Vitali et al., 1994; Steib et al., 1998), that
the semiclassical approximation could be quite inadequate unless l/+ was small,
already verified in (Salkola et al., 1995), was supported impressively in (Kenkre
et al., 1996a). Thus, let me now point out that the lonely trace oscillating high up
in Fig. 9.2 (lower panel) signifying self-trapping is the result of the semiclassical
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Fig. 9.6 Agreement of the approximations with the exact evolution for low frequency (upper panel
(a)) and failure of the semiclassical approximation but success of the memory procedure for high
frequency (lower panel (b)). See text. Reprinted by permission from fig. 1 of Ref. (Kenkre et al.,
1996a). Copyright 1996 by American Physical Society.

description. The actual evolution as given both by the exact numerical (dashed) and
the memory approximation (solid) is shown to be very di�erent: tunneling from
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one site to the other.10 From the repeated instances of the comparative analysis of
numerically exact and the two approximate predictions (semiclassical and memory)
that we carried out systematically in Kenkre et al. (1996a), we show one more in
Fig. 9.6.

The upper (lower) panel is for low (high) frequency. We notice impressive re-
production of the silent runs and oscillation detail by the memory approximation in
(a), the low-l case. Here, l/+ = 2 (and 6 = 3). We also see agreement with the
semiclassical approximation in that the latter correctly reproduces the bounds of the
oscillation (but is unable to describe the silent runs).

The striking failure of the semiclassical approximation as well as the striking suc-
cess of the memory method are obvious in (b) where the frequency is high:l/+ = 15
(and 6 = 1). The semiclassical description shows self-trapping whereas the memory
approximation and the exact evolution stay together and represent tunneling. The
inset in the lower panel describes the long-time evolution and again emphasizes both
the inadequacy of the semiclassical representation and the success of the memory
approximation.

9.3 Additional Investigations into the Validity Question

A systematic study of the analysis of the approximations reported by Salkola, Ragha-
van, Bishop and Kenkre will reveal to the reader numerous interesting findings in
addition to following the time dependence of ?(C). They include monitoring the cor-
relation that measures the e�ect of quantum fluctuations on the system and that is the
missing term from the semiclassical description (Salkola et al., 1995). They involve
studies of the spin-boson system and its features such as entropy maximization far
from equilibrium with the help of Husumi distributions (Salkola et al., 1996). They
also include studies for this purpose of the energy transfer rate in sensitized lumines-
cence (Kenkre et al., 1996a), studies of the fluorescence depolarization (Raghavan
et al., 1996), of anharmonicity in the vibrations particularly with the validity of
semiclassical equations in mind (Raghavan et al., 1999a), and investigations also of
varying the initial condition (Kenkre et al., 1996a). Some of these will be addressed
in the sequel.

The main features of the exact evolution can be understood in terms of a repre-
sentative two-state system in interaction with vibrations in such a way that there is a
time dependence both to the energy mismatch, j(C), and to the transfer interaction,
+ (C). The DNLSE or the semiclassical approximation describes the self-trapping
transition by treating properly the e�ect of j(C) but not of + (C). If the coupling
constant 6 is large enough, the overlap between the wave functions on the two sites
becomes repeatedly near-zero during the vibrational oscillations.11 The enormous

10 It should be kept in mind that this disagreement means that the semiclassical approximation gives
here even qualitatively incorrect predictions.
11 This corresponds to the overlap reduction or band narrowing that is described by the exponential
reduction in + going to + 4�6

2
.
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reduction of intersite interaction suppresses the motion of the quasiparticle. This
goes on for some time until the vibrational oscillation unmakes the mismatch. The
overlap returns to the original value and revival occurs. This happens repeatedly
and causes the silent runs. The period is inversely proportional to l. One can assert
that, while the semiclassical description covers the energy mismatch j(C) but not
the time-dependent transfer + (C), it stays inferior as an approximation relative to the
memory procedure that does both.

9.3.1 A Linear Four-State Model

Worth mentioning here is a clever linear 4-state model that Raghavan invented on
the basis of sum rule arguments such as those put forward in Kenkre (1975). He
has described it in his Ph. D. thesis (1996). In Chapter 4 of the present book, we
have learned pictorially the Stokes sliding of the parabolic potential in which the
oscillator moves. See Fig. 4.1. In the dimer, it can be considered to slide leftwards
and downwards (from the dotted to the solid curve as shown) if the quasiparticle
occupies the left site, and rightwards and downwards, similarly, if it occupies the
right site. Raghavan took the bottom points of the displaced parabolas as states 1
and 2 and the points energetically higher up on the opposite parabolas reached by a
Franck-Condon vertical transition as 3 and 4, respectively. He envisaged the bottom
states 1 and 2 to be connected by the tunneling matrix element+3 ⌘ +4

�6
2
. Through

sum rule arguments (Kenkre, 1975), he introduced a representative matrix element

V =
q
+

2 �+2
3

between states 1 and 3. Requiring that the matrix element+D between
3 and 4, together with+ �3, absorb the interactions responsible for the ‘zero-phonon
line’ in the original problem,12 and keeping in mind that j is the energy di�erence
between the upper and the lower states, Raghavan described the evolution in terms
of the amplitudes ⇠1.2.3.4 that the system is in the four states:

8

3⇠1 (C)

3C

=+3⇠2 (C) + V⇠3 (C), (9.16a)

8

3⇠2 (C)

3C

=+3⇠1 (C) + V⇠4 (C), (9.16b)

8

3⇠3 (C)

3C

=j⇠3 (C) ++D⇠4 (C) + V⇠1 (C), (9.16c)

8

3⇠4 (C)

3C

=j⇠4 (C) ++D⇠3 (C) + V⇠2 (C). (9.16d)

Exact solutions of the linear model are trivial to obtain not only in the dimer system
but even in the infinite chain. What is remarkable is that Raghavan showed that the
results captured a great deal of the exact evolution (although not delicate ingredients

12 The curious reader might be helped by a perusal of (Kenkre, 1975).
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such as the silent runs) that we have had to obtain through tortuous practice of
numerical methodology.

9.3.2 Extreme Limits of the Transformation: Bare and Fully Dressed

A moment’s reflection shows that there is not a single semiclassical approximation
that one should be considering but as many as allowable values of the coupling
constant used in the transformation. The bare limit would be appropriate to small
coupling constants and the full limit to large ones. Let us first study these two limits.
It is quite clear hat the semiclassical approximation anchored in the bare picture
should correspond to removing the circumflexes on the operators in

3 ?̂

3C

= � 2+@̂, (9.17a)

3@̂

3C

=2+ ?̂ � 26lĤÂ, (9.17b)

3Â

3C

=26lĤ@̂, (9.17c)

3Ĥ

3C

=lbcH , (9.17d)

3bcH
3C

= � lĤ � 6lbcH . (9.17e)

Kenkre and Giuggioli (2004) found, however, that there was a problem in assigning
the opposite limit in the fully dressed picture. After full dressing , we have

3%̂

3C

= � 2+
h
&̂ cos(26b⇧. ) + '̂ sin(26b⇧. )i , (9.18a)

3&̂

3C

=2+%̂ cos(26b⇧. ), (9.18b)

3'̂

3C

=2+%̂ sin(26b⇧. ), (9.18c)

3.̂

3C

= � 26+
h
&̂ cos(26b⇧H) + '̂ sin(26b⇧. )i + lb⇧. , (9.18d)

3b⇧.
3C

= � l.̂ . (9.18e)

Removing the circumflexes on the operators on these dressed equations shows that
they have a tendency to get better at representing the actual quantum evolution in the
limit of large l/+ , i.e., opposite to the case with the bare semiclassical approxima-
tion. However, they consistently predict a shift in the probability di�erence ?(C). This
is seen clearly in Fig. 9.7. In contrast to the bare case, the semiclassical procedure of
replacing the vibrational operators by 2-numbers has a double approximation e�ect.
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Assuming
cos(26b⇧. ) ⇡ cos(26hb⇧. i)

involves, in addition to the replacement of the operator b⇧. by its expectation value,
the replacement of all powers of b⇧. , resident in the cosine in the form of its infinite
series by powers of the expectation values.

Fig. 9.7 Comparison of the exact evolution of the exact probability di�erence ? (C) (solid line
E) with two extreme semiclassical approximations: one made after full dressing (dash-dotted
line D) that is otherwise a good approximation to the exact evolution in that it describes the
qualitatives correctly but produces a consistent shift; and one in which no dressing transformation is
performed (dashed line B). This latter is hopelessly inadequate as it shows self-trapping, oscillating
asymmetrically as it does with a mean that is much larger than 0. Parameters are 6 = 0.5 and
l/+ = 10 and the quasiparticle initially occupies one site. Modified with permission from fig. 2
of Ref. Kenkre and Giuggioli (2004). Copyright 2004 by Elsevier Publishing.

This shift problem can be resolved satisfactorily in a pragmatic manner, as dis-
cussed in Kenkre and Giuggioli (2004), by following the prescription suggested
by Reineker and collaborators (Steib et al., 1998) on the basis of the applica-
tion of the time-dependent variational principle (Kramer and Saraceno, 1980).
When the circumflexes are removed from the operators in Eqs. (9.19), one mul-
tiplies + by the Huang-Rhys factor 4�6

2
. It is well-known that the factor appears
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from the overlap of the displaced oscillator and is related to the known identity
hexp(\1 +q1†)i = exp[\q(h1†1i +1/2)] where h...i denotes a thermal average over
the boson Hamiltonian.

As a consequence, the equations of motion in the fully dressed semiclassical
approximation take the form

3%

3C

= � 2+4�6
2
[& cos(26⇧. ) + ' sin(26⇧. )] , (9.19a)

3&

3C

=2+4�6
2
% cos(26⇧. ), (9.19b)

3'

3C

=2+4�6
2
% sin(26⇧. ), (9.19c)

3.

3C

= � 26+4�6
2 ⇥
& cos(26⇧H) + ' sin(26⇧. )

⇤
+ l⇧. , (9.19d)

3⇧.
3C

= � l. . (9.19e)

We find that this set removes the shift problem displayed in Fig. 9.7 by the
application of the 4�6

2
factor and does an acceptable job of approximating the

exact evolution for high values of l/+ . The reader is reminded that this is the
limit opposite to that in which the bare semiclassical approximation (obtained by
removing the circumflexes over the operators in Eqs. (9.17)) works well, as pointed
out in (Salkola et al., 1995) and earlier.

We have seen that the exact quantum mechanical analysis of the dimer shows
remarkable features in its evolution such as not only self-trapping but silent runs
as well.13 The suggestion, probably made by many authors independently, see, e.g.,
Kenkre et al. (1996a), that these phenomena arise from an e�ective time-dependent
energy mismatch and an e�ective time-dependent intersite transfer matrix element
can be given a firm footing from Eqs. (9.19) and (9.17), respectively. Define for this
purpose the time-dependent complex interaction

+' (C) + 8+� (C) = +4�6
2
4
826⇧. (C) = +4�6

2
[cos 26⇧. (C) + 8 sin 26⇧. (C)] . (9.20)

One deduces from the set. (9.19) that its first three equations can be written as the
following torque equation for the precession of a rigid rotator:

3
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0 2+' (C) 2+� (C)
�2+' (C) 0 0
�2+� (C) 0 0

™Æ
¨
©≠
´
%

&

'

™Æ
¨
= 0. (9.21)

The real quantities +' (C) and +� (C) evolve trigonometrically with the dressed mo-
mentum ⇧. (C) that is changing in time as their argument. As a consequence, the
time-dependent interaction can periodically collapse and produce the silent runs in

13 Such features have been well known in related fields such as quantum optics. See, e.g., (Allen
and Eberly, 1987).
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%(C) = ?(C). The dressed picture for the full semiclassical system makes this quite
clear.

Cast in a similar torque form, the bare semiclassical equations (9.17) yield

3

3C
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™Æ
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0 2+ 0
�2+ 0 2⇢ (C)

0 �2⇢ (C) 0

™Æ
¨
©≠
´
?

@

A

™Æ
¨
= 0. (9.22)

They show that the (bare) quasiparticle shuttles with constant intersite transfer +
between two energetically mismatched states. The e�ective mismatch ⇢ (C) is time-
dependent and proportional to the displacement of the bare oscillator:

⇢ (C) = 6lH(C). (9.23)

We know, of course, that energy mismatch in the dimer leads to probability oscilla-
tions that are not complete, signifying self-trapping.

We see thus that the disruption of transfer, equivalently localization, occurs in
two separate ways. What emerges from the discussion is that the bare limit is repre-
sentative of energy mismatch, which is one of them, whereas the fully dressed limit
is representative of reduced intersite transfer, which is the other way. By ‘reduced’ I
refer here not merely to what the Huang-Rhys (sometimes called the Debye-Waller)
factor 4�6

2
does, but also, and particularly, to the time variation that can periodically

collapse the e�ective transfer.
A rather detailed comparative investigation of the bare and the fully dressed semi-

classical approximations has been carried out in Kenkre and Giuggioli (2004).14 One
of the quantities studied was an objectively calculated least-squares error between
the exact evolution and each of the semiclassical approximations. Particularly two
regions in 6,l space were explored. In the first, the oscillator frequency was varied
relative to the transfer over three orders of magnitude between values 10�1 and 10+2

of l/+ , the coupling constant 6 being varied from 0 to 14. In the second, the varia-
tion of l/+ was over five orders of magnitude between 10�2 and 10+3 and that of the
coupling constant 6 from 0.1 to 3. A normalized (least-squares) discrepancy factor

[ /

vt’
:


?4G02C (C: ) � ?B4<82;0BB (C: )

|?4G02C (C: ) | + |?B4<82;0BB (C: ) |

�2

, (9.24)

where the su�x ‘semiclass’ stands for the respective semiclassical approximation
and : marks the points selected for the least squares estimate. The reader is referred
to the original publication for plots and discussion. The overall conclusion to be
drawn from those studies was that the bare semiclassical approximation is excel-
lent and its dressed counterpart is totally inapplicable if the oscillator frequency is

14 This was a review article I was invited to write by Abraham Nitzan for a special issue of Chemical
Physics that covered various approaches to the spin-boson problem. The issue, masterfully edited
by Grabert and Nitzan, is full of nuggets of research into the topic and I recommend all its articles
heartily to the reader.
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small whereas in the opposite, high frequency, case (l/+ > 5 for instance), the
dressed approximation can practically coincide with the exact evolution while the
bare approximation is way o�.

Half of the findings thus support the observations of Grigolini and collaborators
and agree with (Salkola et al., 1995)’s ‘massive oscillator limit’ argument. The other
half of them are new and should provide food for fresh thought.

Fig. 9.8 Evolution of the agreement of which semiclassical procedure approximates the exact
evolution better as time progresses. The coupling constant and frequency ratio are here given by
6 = 3 and l/+ = 10. The probability di�erence ? (C) is plotted in the long time domain in
the main plot and in the short time domain in the inset. Excellent agreement is noticed with the
dressed semiclassical (dotted line) as it approximates the tunneling of the quasiparticle (overall
oscillation between 1 and -1). The bare semiclassical (dashed line) is hopeless in its depiction of
the constant at 1 signifying self-trapping. In the inset however, where the time in units of 1/+ goes
not to 15000 but only to 0.7, we see the opposite situation! The dressed semiclassical (dotted line)
is remaining constant on this time scale at the very top whereas the bare semiclassical (dashed
line) reproduces the bounded oscillations of the exact evolution (solid line) faithfully although it
is unable to produce the silent runs. Modified with permission from fig. 5 of Ref. Kenkre and
Giuggioli (2004). Copyright 2004 by Elsevier Publishing.

There is another conclusion, one that could be unexpected for some investigators
in the field, that can be drawn from the work of Kenkre and Giuggioli (2004).
It is about the evolution of the validity as time progresses for a fixed coupling
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constant and frequency-interaction ratio. As emerges quite clearly from that work,
the reliability of the approximation method passes from the bare to the dressed
version of the semiclassical procedure as time evolves. Tests were carried out in that
publication over really large time spans: focusing attention on 0 < +C < 1 as well
as on 0 < +C < 15000 for the same set of parameters and a single initial condition,
and keeping track of the comparison of the approximation to the exact result. Fig.
9.8, reproduced here from Kenkre and Giuggioli (2004), should convince the reader.
This time evolution of validity from bare to dressed might have been missed by
investigators in the field.

Yet another observation that we made in Kenkre and Giuggioli (2004) deserves
notice. The bare result in the inset of Fig. 9.8, which clearly approximates rather well
the exact evolution on the short time scale (except for the silent run), is practically
indistinguishable from the prediction of the fully adiabatic15 nonlinear dimer (Kenkre
and Campbell, 1986; Kenkre, 1989, 1994a) that started for me this entire nonlinear
adventure. Its prediction has the simple analytic form

?(C) = dn
✓
jC

2
,

4+
j

◆
(9.25)

expressed in terms of the dn Jacobian elliptic function with argument jC/2 = 62
lC

and elliptic parameter (whose square is the elliptic modulus) 4+/j = 2+/62
l.

What does this mean? It shows that the DNLSE depicts the short time evolution
excellently so long as demand is not made on it to describe tunneling–a long time
phenomenon outside its reach. All those who have felt on the basis of objections
raised in the literature that the DNLSE ought to pack its bags, should take note.

It goes without saying, surely, that the two limiting forms of the semiclassical
approximation are not identical to each other. Accordingly, one should stop the
current practice of referring to ‘the semiclassical’ approximation. This cautionary
suggestion goes beyond the fact that the Huang-Rhys factor appears firmly in one
limit but not the other. While ? and % happen to be identical to each other (and so too
cH and ⇧. ), this is not true of @, A , and H and their respective dressed counterparts.
More to the point, the equations of evolution are not all identical in the two versions.

This sets the scene for our discussion of the next Section, which is primarily
conjectural in nature.

9.3.3 An Infinite Number of Semiclassical Approximations

The dressing transformation that we have mentioned throughout the development
uses the full coupling constant 6 in its implementation. While this may be reasonable
for a situation in which the coupling is very strong, it may be inaccurate to use it for
every case. The idea of using an intermediate amount of dressing with a coupling

15 The word ‘adiabatic’ here follows the clear usage employed in this book that signifies infinitely
fast relaxation rate �, which means the DNLSE is being used; it does not refer to any l/+ ratio.
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constant ⌧ intermediate between 0 and the actual 6 was introduced into the field in
conjunction with a variational treatment. These concepts were originally discussed
by Merrifield and later by Toyozawa at a conference in 1975 (Shionoya et al., 1976)
and were continued by various investigators including (Yarkony and Silbey, 1977;
Silbey and Harris, 1984; Harris and Silbey, 1985; Parris and Silbey, 1985). They
were also used for applications by (Parris and Kenkre, 2004; Cheng and Silbey,
2008). In these treatments it was argued that ⌧, that surely lies in between 0 and the
6 in the Hamiltonian, should be calculated through a variational principle applied to
an appropriate free energy function.

Thus, now the transformed operator corresponding to the bare 0̂ is �̂0 through

�̂
0 = 4(�8⌧bcH ?̂)

0̂4
(+8⌧bcH ?̂)

, (9.26)

and leads to modified versions of the Hamiltonian as expressed on the other operators
and of the semiclassical equation set for the 2-numbers (primed to denote partial
dressing). This has been written down explicitly in Kenkre and Giuggioli (2004).
The important point to note is that the counterpart of the torque-like equations for
the partially dressed case now is
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with both ⇢ (C) and the complex + (C) present and given by

⇢ (C) =(6 � ⌧)l. 0
(C), (9.28a)

+ (C) =+' (C) + 8+� (C), (9.28b)

+' (C) =+ 0 cos(2⌧⇧0

.
), (9.28c)

+� (C) =+ 0 sin(2⌧⇧0

.
). (9.28d)

The+ 0 is an intermediate quantity between the bare limit+ and the fully dressed limit
+4

�6
2
, conjectured to be approximated by +4�⌧

2
. Obviously, the partial dressing

program is mentioned above only in the form of a conjecture, if at all, is highly
unfinished and in need of a great deal of work.16

9.4 Relations to Other Approximation Programs

Comments have been already made about the connections between our memory
method and some other investigations such as the analysis of Reineker and collabo-
rators (Steib et al., 1998). Let us remark on links to three other studies, the so-called
noninteracting blip approximation by Leggett et al. (1987), an action angle variables

16 You, the reader, are invited to give it proper despatch if it strikes your fancy. You might find
useful some comments on it made in Kenkre and Giuggioli (2004).
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formalism by Lu and Dunlap (2003) and the Grigolini papers that started some of
the validity studies.

9.4.1 Leggett et al’s Noninteracting Blip Approximation and its
Equivalence to the Memory Method

We have seen repeatedly in this Chapter that the memory method has met with
considerable success in its description of the dynamics of our system of a quasipar-
ticle interacting with vibrations.17 The memory method was developed a good deal
further, in concept as well practice for exciton dynamics in Kenkre (1975), and was
explained in that context thoroughly in the book (Kenkre and Reineker, 1982).

Indeed, a particularly useful application of that method was made a few years later
to resolve a puzzle in naphthalene experiments that had remained as an unsolved
problem for several years (Duke and Schein, 1980). (See Fig. 9.1 and the related
discussion at the beginning of this Chapter.) That resolution (Kenkre et al., 1989), was
done primarily in collaboration with my then-student John Andersen as well as with
Charlie Duke of Xerox. The theory explained the so-called (incorrectly suspected)
band-hopping transition data in the temperature dependence of the mobility of charge
carriers on the basis of polaron ideas. It was reviewed and commented upon in books
on this latter subject such as by Pope and Swenberg (1982, 1999), and articles such as
by Wu and Conwell (1997). It has also received coverage in my own books, (Kenkre
and Reineker, 1982; Kenkre, 2021).

Remarkably, Grigolini and collaborators have shown, apparently without realizing
these earlier references I have mentioned, and the uses we have put our memory
method to over the years, that the method is equivalent to the much discussed
‘noninteracting blip approximation’ authored by Leggett et al. (1987). I do not know
how important to the current reader it might be to see the following demonstration
explicitly but the reader might want to start with Eq. (3.6) of Vitali and Grigolini
(1990). These authors have stated that that equation coincides exactly with the result
of the non-interacting blip approximation of Leggett et al. (1987).

If you merely substitute the symbols 2+2 and 68 , that we have used in this book,
to (respectively) replace l2

0 and 6�8/l8 in Eq. (3.6) of (Vitali and Grigolini, 1990),
you convert that equation into

3hfG (C)i

3C

+ 2
π

C

0
3BW(C � B)hfG (B)i = 0, (9.29)

with W(C) given precisely by our expression in Eq. (9.6) with its ⌘(C) spelled out
in Eq. (9.7) in terms of the temperature factors, the coupling constants and the
frequencies.

17 It started as a calculation I worked out in collaboration with Talat Rahman (Kenkre and Rahman,
1974), basically on a lark while on a break in our regular pursuits, during friendly conflicts I had
with Robert Silbey on the best way of analyzing exciton transport in molecular aggregates.
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What this means is that the identification of hfG (C)i with the probability di�er-
ence ?(C), which is what it is, immediately yields a noteworthy consequence. What
Vitali and Grigolini (1990) have called their ‘central equation’, as well as the expres-
sion representing the non-interacting blip approximation of Leggett et al. (1987), is
nothing other than our memory result!18 Like the results of Leggett et al. or of Vitali
and Grigolini, our memory expressions were always expressed in their fully general
form at any temperature with any number of modes and for any values of parameters.

Bishop, Salkola, Raghavan and I mentioned in Kenkre et al. (1996a) that the
memory approach, specifically the evolution equation (2.14) in that paper, “...ap-
pears to be closely related, for all practical purposes identical, to the more recent
noninteracting blip approximation given on the basis of a quite di�erent and (at least
in the general context) considerably more complex formalism...”

We thought at that time remarkable that the connection had remained undiscovered
for so long. We made further such remarks in Kenkre (1998a) and in Kenkre and
Giuggioli (2004). However, that lack of communication between communities of
researchers has continued for another 20 years.19

9.4.2 Dunlap’s Action Angle Formalism and Connection to Dynamic
Localization

In a clear and crisp paper written in collaboration with his student, David Dunlap
applied (Lu and Dunlap, 2003) an action angle variables formalism to the dimer in
interaction with vibrations for the case when the vibrational frequency is large with
respect to the intersite transfer. The result obtained was that, for an initial coherent
(or high phonon number) state in the phonons, the bandwidth reduction went not
via the exponential Huang-Rhys factor but through the Bessel function of zero order
with the coupling constant as its argument.

In order to understand the connection of such a result to our memory function
in a simple way, let us cast Eq. (9.10) in a form wherein its last factor is expressed
through an expansion in terms of Bessel functions,

cos(262 sinlC) = �0 (262
) + 2

1’
<=1

�2< (262
) cos 2<lC, (9.30)

18 Obtained almost half a century ago now in Kenkre and Rahman (1974) and used, as stated
above, subsequently for excitons by Kenkre (1975), for photo-injected charge carriers in Kenkre
et al. (1989) and for the validity of semiclassical approximations in one-mode model calculations
in Kenkre et al. (1996a).
19 Vitali and Grigolini (1990) mentioned that Aslangul et al. (1986) applied Zwanzig projections
after the Hamiltonian transformation to derive the non-interacting blip approximation result. This
was exactly the technique, first transforming and then applying Zwanzig projections, that was used
by Kenkre and Rahman (1974). No wonder our result, with a di�erent purpose and direction, is the
same as the one derived eleven years later by Aslangul et al. (1986). Surely, the value of the latter
reference is great and lies in their demonstration of how easy it is to get the non-interacting blip
result without using complex formalisms.
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and the middle factor similarly in terms of modified Bessel functions,

exp(262 coslC) = �0 (262
) + 2

1’
<=1

�< (262
) cos<lC. (9.31)

Substitution produces, see, e.g., Kenkre and Giuggioli (2004),
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It is clear that, in the high frequency limit, the neglect of rapid oscillations yields the
proportionality of the memory function,

W(C) ⇡ 2+2
4
�262

�0 (262
) [�0 (262

) + �2 (262
)], (9.33)

to a sum of Bessel functions �0 (262
) and �2 (262

). This brings some understanding to
the Lu- Dunlap result that the motion is sensitive to the Bessel function of argument
proportional to the square of the coupling constant20.

The Bessel zeros connection opens the analysis to delightfully complex areas of
research involving what is known in various circles under the names of dynamic
localization (Dunlap and Kenkre, 1986b, 1988b,c; Raghavan et al., 2000; Kenkre
and Raghavan, 2000), coherent destruction of tunneling (Großmann and Hänggi,
1992; Grifoni and Hänggi, 1998), and quantum control (Kenkre, 2000). Although
the topics fall outside the purview of this book, they are closely related and o�er
exciting physics. I recommend to the reader a recent review by Bukov et al. (2015).

9.4.3 Grigolini’s Analysis, its Importance and Risks of its
Mistinterpretation

Through their work published in the 1990’s, Grigolini and his collaborators made
valuable contributions by pointing out the possibilities of missed terms and the
adiabatic-nonadiabatic confusion in the analysis of spin-boson problems. We em-
phasized the importance of their contributions in several papers and conferences
exemplified by the statement in (Salkola et al., 1995) that we “...support their earlier
finding that the antiadiabatic limit, leading to the DNLSE according to the usual
semiclassical arguments, does not produce the correct low-energy physics...”, the
assertion in (Kenkre, 1998a) that the work “has addressed issues lying at the heart
of the problem and their analysis has led to the conclusion that much could be

20 I am indebted to David Dunlap for a conversation regarding this old argument during the writing
of this book.
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amiss in the semiclassical approximation” and in (Kenkre et al., 1996a) that our own
work “supports the conclusions drawn by them that semiclassical equations of mo-
tion...could be questionable in many physically relevant cases.” Nevertheless, there
are risks in possible misinterpretations of their work that I briefly mention here.

We have learnt from their work, and confirmed independently by our own (Salkola
et al., 1995; Kenkre et al., 1996a) that the semiclassical approximation in our system
of the dimer interacting with vibrations gets worse for large l/+ and, conversely, is
more accurate for small l/+ . It is important to remember that we have shown that
the semiclassical approximation happens to be exact in Salkola’s massive oscillator
limit (Salkola et al., 1995). The limit is characterized by 6 ! 1,l ! 0, 62

l !

const., and can be ascertained not only from the expression for ?(C) as we have done
in Eq. (9.15), but also in the comparison between panels in Fig. 9.6, and also directly
by inspecting our expression for the memory function W(C) in Eq. (9.10).

The danger of misinterpretation of the analysis of Grigolini et al. and possible
misuse of their result lies in assuming that this limit of small l/+ , that validates
the semiclassical treatment, is in contradiction to the limit used by us, for instance
in Kenkre and Wu (1989b,a), to set up the DNLSE. Such a supposition would be
patently incorrect. The fast time assumption we use to get the DNLSE form the
semiclassical dynamics is NOT that associated with the vibrational frequency l at
all but with the relaxation rate �. A careful examination of Chapter 7 of this book, as
well as of our original publications (Kenkre and Wu, 1989b,a), will make this quite
clear to the reader.

We can certainly have a situation with smalll/+ for the isolated dimer. This would
make the semiclassical treatment an accurate approximation. If we now consider the
dimer in interaction with a bath as explained in Chapter 7 or originally in (Kenkre
and Wu, 1989b,a), we have a perfectly valid passage to the DNLSE if the relaxation
is fast. The confusion between the uses of adiabatic versus nonadiabatic as phrases
for the process has sometimes occurred in the literature but in our own arguments it
has not.21 Our treatment has never used a high l/+ argument to pass to the DNLSE;
instead, it has always used for that purpose damping produced, for instance, by the
environment in which the dimer is embedded. If the Grigolini analysis makes the
reader lean towards thinking that there is a contradiction involved, it is important
that this misconclusion be corrected.

9.5 A Brief Return to Davydov Solitons

Let us now return at the end of the Chapter to what served sometimes as a backdrop
for the investigations we carried out: the Davydov soliton. It is my belief that the

21 As explained already elsewhere in the book, I have used ‘adiabatic’ to represent instantaneous
appearance of the (cubic) nonlinear term in the DNLSE and not to mean a vibrational frequency
that is high with respect to intersite transfer. This latter terminology has been unfortunately used by
some others in the literature. A sentiment similar to ours has been expressed on page 341 of their
book by Dauxois and Peyrard (2006).
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original idea in the field was to posit a soliton so it could oppose within itself the
destructive e�ects of dissipation and dispersion and convey signals without loss over
what was unimaginably long distances through nerves in living beings. The idea did
not survive in that context but received much support generally in the context of the
conveyance along proteins, of the free energy released by the hydrolysis of adenosine
triphosphate. When Alwyn Scott heard of the idea from Davydov, he decided to give
it support and did a great job through his leadership of an international group that
produced many publications and conferences. The rest of this brief section will
describe, compactly, some of the ideas and goings-on.

The original conception of Davydov was based on an ansatz for the assumed
combined state of the moving quasiparticle and vibrations interacting strongly with
it. The ansatz was modified with the passage of time and survived longest under the
name of the ⇡2 ansatz.

Essentially, the state considered was a more or less (spatially) localized excitation
of the moving quasiparticle with the vibrations in a coherent state (coherent in the
sense of Sudarshan and Glauber). Although the system was fully quantum mechani-
cal, it was postulated (or assumed by some to have been derived) that the vibrational
subsystem could be described by classical equations of motion. Thus,

8
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I have suppressed the \ that multiplies the left hand side of (9.34a) for compatibility
with usage in this book but have otherwise kept to the symbols in the Davydov
literature.

The quantum mechanical amplitude of the quasiparticle to be at site = in the
representative single chain is 0=. The quasiparticle tends to move with nearest-
neighbor transfer interaction � (but was, perhaps surprisingly, arranged to have
di�usive-like terms) and a strong interaction through the coupling parameter j with
what can be thought of as the (discrete) spatial derivative of the chain oscillator
displacement: the site energy of the quasiparticle is taken to be proportional, thus,
to the spatial derivative. The displacement of the oscillator in the chain from its
equilibrium is V=. It evolution equation follows the standard (classical) Newton’s
oscillator dynamics. The mass of the oscillators at each site is <, the spring constant
is  .

It is easy to see that the assumption that time derivatives of the oscillator dis-
placements V= may be neglected (for whatever reason), if made at this point, leads
to a modified version of the DNLSE for the quasiparticle amplitudes,

8

30=

3C

= �� (0=+1 + 0=�1 � 20=) �
j

2

 

|0= |
2
0=, (9.35)

whose continuum limit is, even more easily than from Eq. (1.2) of Chapter 1, the
standard continuum form of the nonlinear Schrödinger equation. Soliton behavior is
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expected including dispersion and nonlinearity combining into smooth transport if
you neglect discreteness e�ects.22

Soliton aficionados were delighted while condensed matter types were worried.
The delight was caused by the opportunity to utilize numerous concepts and tech-
niques existing already in soliton physics and mathematics. The worries were about
whether the interactions in the Hamiltonian were indeed of the kind postulated,
whether the Davydov ansatz made sense at the time of preparation and what kind
of state preparation this entailed precisely, whether, even if the ansatz were initially
correct, the state maintained that form as time evolved, and, even if these nonlinear
desirable states could exist, how cold did the environment have to be for them not to
be exterminated by thermal fluctuations in short order.

As I have said a few times now in these pages, this is not a book about the Davydov
soliton. It is just closely connected in its problems and the tricks used in the solution
of these problems to the simple dimer system (the true system of interest to the
book) that came my way accidentally in my research. For further details, let me,
therefore, refer you in the briefest manner possible to two books I have mentioned
in the Preface, (Christiansen and Scott, 1990) and (Dauxois and Peyrard, 2006). The
first of these makes quite an e�ort to have opponents and proponents of the Davydov
concept have their say,23 and is a fine compendium of activities on the Davydov
soliton until 1989. The second book is a favorite of mine for the way it is written, and
happens to be a much later compilation. Unfortunately, it is on the general subject
of solitons and has just a chapter among many on the Davydov kind. For a recent
review that is favorable to the Davydov-Scott model, the reader might take a look at
Cruzeiro’s article (Cruzeiro, 2009) that I have already mentioned in Chapter 8.

There has been an unfortunate, and remarkable, dearth of incisive data fueling,
challenging and stimulating the theoretical discussions of the Davydov soliton com-
munity. The work by Careri and their collaborators on acetanilide crystals (Careri
et al., 1984) seemed to many to be associated with polaron features and spatial
localization rather than dispersionless transport of energy by solitons. I will now
describe, briefly, a crude estimate that was published in Kenkre et al. (1996a) as part
of the application of the dimer theory to three di�erent systems. One of the three
represented (a dimer version of) the Davydov problem.

The three caricature versions of experimental systems we considered with the help
of our memory method and the semiclassical approximation have as their respective
observables, charge mobility in aromatic hydrocarbons such as naphthalene, thermal
di�usivity in high-) thermoelectrics such as boron carbide, and vibrational energy
transfer in biological systems such as protein. Although surely the dimer calculations
we attempted could not really represent extended crystals, we assumed as a working

22 Not to forget that 0, �� , j2
/ in the Davydov soliton equations bear kinship, respectively, to

the amplitude 2, the intersite transfer + , the nonlinearity j in the DNLSE notation used in this
book.
23 I myself resisted contributing to the book initially. Eventually, I included a one-page article on
my work that I considered relevant to the subject matter (after repeated kind and warm requests by
Al Scott to do so); at all the conferences of that sub-community I had been a curious, interested,
and vocal member of the audience.
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hypothesis that the essential physics might be captured in a skeleton sense. Here are
two of the examples.

Fig. 9.9 A crude representation of the photo-injected carrier in an aromatic hydrocarbon crystal.
Parameter values are estimated from experiment. See text. The semiclassical approximation appears
to do very poorly for this system while the memory method follows the exact evolution well. Modified
with permission from fig. 6 of Ref. Kenkre et al. (1996a). Copyright 1996 by American Physical
Society.

The first of these, see Fig. 9.9, involves data on the mobility of photo-injected
charge carriers in naphthalene, the moving quasiparticle being a hole or electron
interacting strongly with librational phonons. Parameters were obtained from inde-
pendent experiments and gave the coupling constant 6 = 1.8, the carrier bandwidth
10.5 <4+ , and vibrational phonon energy as 16 <4+ . In the notation we have used
in the book this means 6 = 1.8,+ = 60 ,l/+ = 3.2.

Compared in Fig. 9.9 are the exact quantum calculation, semiclassical approx-
imation, and memory function analysis. Clearly, the semiclassical approximation,
maintaining as it does, its distance from the other two curves (it is the lone curve
at the top both in the inset and the main figure), fails badly; the memory function
analysis recovers all the salient features of the exact evolution for the assumed pa-
rameters. In particular, the short-time evolution at a frequency of 62

l, decay of the
initial oscillations on the order of a time of 1/6l, oscillations revival at a frequency
of l and the tunneling to the other site at time of the order of 46

2
are all shown by

the memory calculation.
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Fig. 9.10 A crude representation of the Davydov system but with parameter values estimated from
experiment and theory. See text. The semiclassical approximation appears to do as well as the
memory method in following the exact evolution. Modified with permission from fig. 6 of Ref.
Kenkre et al. (1996a). Copyright 1996 by American Physical Society.

The second of these, see Fig. 9.10, is a crude representation of the Davydov
soliton. The coupling parameter j (not to be confused with the nonlinearity parameter
represented by that symbol throughout this book) has been estimated to be 35 ?# in
Scott (1992) and 67 ?# in Careri et al. (1984). The longitudinal spring constant is
three times that for a single hydrogen bond which in turn, is estimated to be 13 #/<
from experiments in Itoh and Shimanouchi (1972) and from ab initio calculations
(Scott, 1992) to be 19.5 #/<. The reader is referred to Kenkre et al. (1996a) for
detailed explanations for the rest of the parameter values. The coupling constant that
we call 6 turns out to vary between 0.035 and 0.084 and the ratio of the phonon
energy to the intersite transfer, \l/+ , to lie between 11.2 and 13.8.

The result of the calculations is seen in Fig. 9.10 as revealing that the memory
approach is slightly better in representing the exact evolution but the di�erence is
not significant for the particular parameter set used: the semiclassical approximation
is also quite acceptable. This is completely di�erent as a conclusion reached relative
to the first system treated.

My purpose in displaying the (two of the three) examples treated in Kenkre
et al. (1996a) is solely to show that the semiclassical approximation can do well in
some systems and poorly in others. No conclusive results are to be attributed to this
graphical demonstration about the actual Davydov soliton.
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In closing out this brief description of the work on the Davydov soliton that I
had occasion to watch so many decades ago from my vantage point as an interested
active outsider to the subject, I would like to recommend to the curious reader to
pay particular attention to the writings that originated with three groups: Al Scott
(and his immediate collaborators) who was the prime mover and shaker while the
activity lasted; Kerr and Lomdahl who (with clear derivations) in simple terms
zeroed in on whether the Davydov soliton has a quantum mechanical past and a
statistical mechanical (i.e., thermal) future; and Brown, Lindenberg and West who,
coming from a condensed matter and statistical mechanics background, left no stone
unturned in investigating theoretically the foundations of the concept.24

9.6 Chapter 9 in Summary

The DNLSE is typically thought to arise in polaronic systems in which a quasiparticle
interacts strongly with vibrations or other motions involving bosons through time
scale disparity of the quasiparticle and the vibrations. Many have interpreted this
argument as requiring fast vibrations that are slaved by the slower quasiparticles. To
facilitate the reader’s understanding of the problem as well as suggested remedies to
come later on in the Chapter, the discussion began with the elucidation of standard
polaron concepts such as the displaced oscillator transformation and the calculation
of memory functions. The memory method was recalled to have been accurate,
consequently highly successful, in the description of the temperature dependence
of carriers in complex organic crystals. It was applied to zero ) , one-mode model
under investigation and was also found to be remarkably accurate. By contrast, the
standard (bare) semiclassical approximation was found to fail for several frequency-
transfer ratios. Studies confirmed the concerns raised in the literature that where
the (bare) semiclassical approximation seemed to fail in the worst way was the
high vibrational frequency limit. This appeared to be opposite to the limit in which
the DNLSE could be then obtained from the semiclassical equations. Numerical
solutions of the one-mode zero-) system showed that the semiclassical equation
worked in the massive oscillator limit in which the vibrational frequency is very
low compared to the intersite transfer. A hierarchy of time scales was noted in the
evolution of the probability di�erence. A corresponding time scale hierarchy was
noticed in the memory function making possible an understanding of the evolution
in terms of the system parameters: coupling constant 6 and its square, the oscillator
frequency l and their simple combinations. It was shown that the system in which

24 David Brown, who had been my Ph. D. student as I have mentioned in the Preface, knew all
about how to apply powerful projections to polarons; Katja Lindenberg was a colleague well versed
in every aspect of condensed matter physics necessary for this subject, and Bruce West was a well
known authority in modern statistical physics. A fascinating treat awaits the reader who decides
to analyze their many publications on this subject. If you do, please pay attention to the exquisite
puns that David Brown sprinkled throughout the writings of this San Diego group just as he did in
papers he published with me during his thesis work.
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our considerations worked best in the adiabatic extreme were at the low frequency
end making possible the massive oscillator limit. Furthermore the DNLSE could
then arise from such a system if it is coupled to a damping agency that produced
fast removal of the vibrational energy as detailed in Chapter 7. Validity studies were
carried out for dressed vibrations and it was shown that bare and dressed semiclassical
approximations (a) work best in opposite limits of the frequency-transfer ratio,
respectively low and high, and (b) improve remarkably from short-time for bare
to long-time for the dressed cases. With the help of other published results in the
literature we showed that the so-called noninteracting blip approximation of Leggett
et al. was precisely the same as our memory method. We also touched upon some
other approaches including by Reineker et al. based on the time-dependent variational
principle and Dunlap’s action angle variables approach. A brief explanation was also
given of how some related questions in the Davydov soliton backdrop play out.



Chapter 10
Bose-Einstein Condensate Tunneling: the
Gross-Pitaevskii Equation

First some verbiage.

10.1 A Lookalike of the DNLSE in BEC Condensate Dynamics

10.2 Transitions and Tunneling in Condensates via the DNLSE
Techniques

10.3 Validity of the DNLSE in the light of Quantum Dynamics

10.4 Recent Results in Quantum Oscillations in BEC
Condensates

10.5 Chapter 10 in Summary

John D. Andersen, Srikanth Raghavan, V. M. Kenkre, http://arxiv.org/abs/2108.08711
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Chapter 11
Miscellaneous Topics and Summary of the Book

C. B. Duke, known to his friends and foes as Charlie, was an active collaborator of
mine in the 1980s when I was on the faculty at the University of Rochester and he at
the Xerox Research Laboratory in Webster. Brilliant in his science, he had a sharp
tongue and a keen sense of humor. Framed in his o�ce was this statement:

All those of you who think you know it all, are very annoying to us, who do.

He let me take a copy of the statement. It has been hanging in my o�ce ever since.
Every time I have written a book, as I arrive at the last Chapter where I summarize,
I have a sinking feeling in the pit of my stomach that illustrious experts among my
readers might be thinking that thought, addressing it aggressively at my book and
me. I am experiencing the feeling in my stomach this moment but have decided to
continue any way.

This final Chapter of the book is in two parts. In the first, some miscellaneous
topics are touched upon to complete the story that has been woven so far. In the
second part, a brief summary is given of the contents of the book.

11.1 Assorted Subjects and Directions

There are a few directions in nonlinear science that my collaborators and I pursued
that do not quite fit as parts of the development in the first 10 Chapters of the
book. Mentioning them might help the reader complete the picture. Nine topics
suggest themselves to me in this regard. I will explain six of them in the next
section, each in its own subsection. The first three deal with (i) the application
of Zwanzig projections to the nonlinear von Neumann equation corresponding to
the DNLSE, (ii) a treatment of external fields applied to the nonlinear dimer, and
(iii) an investigation of how anharmonicities in the vibration a�ect the validity of
the semiclassical approximation through the study of the Pöschl-Teller potential. In
the next three we step out into spatial extended systems to (iv) investigate soliton
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propagation in mixtures of bosons and fermions, (v) consider self-trapping transitions
when a localized nonlinear impurity is embedded in an extended linear system, and
(vi) to consider the only classical system treated in this book, inspired nevertheless
by quantum considerations, related to excimers in molecular aggregates. Although
the purpose of the studies reported in the book has been to focus on small systems,
those three are exceptions. They are included as lying naturally on the borders of our
theme.

The three topics I will not explain but only give references to are: an investigation
of the thermal conductivity of boron carbides that my student Ximing Fan undertook
with me using some related nonlinear methods and the dressing idea: (Kenkre and
Fan, 1987, 1988; Fan and Kenkre, 1989); work that Kalosakas published with Alan
Bishop and me on the multiple-timescale quantum dynamics of interacting bosons
and on the Hubbard model (Kalosakas et al., 2003a,b); and the analysis of the bound
rotator that Raghavan undertook with me as support study for further investigations
of the rotational polaron (Raghavan and Kenkre, 1994).1

11.1.1 Application of Projection Techniques to the Nonlinear Dimer:
Generalized Master Equations

A problem that had received a great deal of attention from clever minds in the field
of statistical mechanics in the 1950s was the derivation of the Master equation for
the probabilities of state occupation starting from the (von Neumann) density matrix
equation of quantum mechanics. The activity had to do with a central problem of
physics as it was associated with the understanding of the onset of macroscopic irre-
versibility in systems obeying reversible equations of motion at the microscopic level.
In order to cut through the confusion that existed in that earlier work (seminal though
it was), because of the complex methodology used, Zwanzig (and Nakajima, indepen-
dently) introduced diagonalizing projection operators. (Nakajima, 1958; Zwanzig,
1961, 1964) That projection technique showed how to get, rather directly, equa-
tions for the quantum mechanical probabilities in a chosen representation that were
essentially closed in those probabilities.

An obvious question that one might ask is what happens if we apply such diago-
nalizing projection operators to the nonlinear density matrix equation (1.6) that is a
consequence of the DNLSE. Superficial considerations might lead one to think that it
is not legitimate to apply a linear technique such as that of projections to a nonlinear
equation such as (1.6). Wu showed that this line of reasoning was flawed. He was
successful in carrying the program through as is evident in Wu and Kenkre (1989).
See also (Kenkre, 2021, 2000). A description of the method and results follows.

1 The decision to omit a fuller commentary on these is almost arbitrary. The interested reader should
look up the references.
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Let us begin by recasting the nonlinear von Neumann equation in terms of two
‘Liouville operators’2, the first of which is the standard commutation operator !+$ =
[+ ,$]. For nearest-neighbor interactions, we are assuming in Eq.(1.6) that, for any
ordinary operator $, its matrix elements are given by (!+$)<= = + ($<+1,= +

$<�1,= � $<,=+1 � $<,=�1). The <, = label eigenstates of a part �0 of the full
Hamiltonian and what is being sought is the evolution of the probabilities (diagonal
elements of the density matrix) of occupation of these states <, =. The second
Liouville operator is defined as

(!j$)<= = j(d<< (C) � d== (C))$<=, (11.1)

and the nonlinear density matrix equation (1.6) is reexpressed as

3d

3C

= �8
�
!+ d + !j (C)

�
d = �8! (C)d. (11.2)

Note that I have explicitly indicated the time dependence of !j because it neces-
sitates a slightly more complicated treatment of the solution of an otherwise linear
di�erential equation. As is well-known, the complication is that it involves time
ordering of operators; I expect it to be standard fare to the reader.

The next step in the Zwanzig development is to define a projection (super)operator
that in the selected representation extracts the diagonal part of the operator on which
it acts. Let us give it the symbol D rather than the usual P to follow Zwanzig’s
original terminology (Zwanzig, 1961, 1964) particularly because there are no traces
over phonons or baths involved. Specifically,

(D$)<= = $<<X<,=

for any operator $. The application of (1 �D) to Eq. (11.2), where 1 is the identity
matrix, produces

3d
00
(C)

3C

= �8(1 �D)(!+ + !j (C))d
00
(C) � 8(1 �D)(!+ + !j (C))d

0
(C) (11.3)

as the equation of evolution for the o�-diagonal part of the density matrix, d00 ⌘
(1�D)d. Because we were clever enough to interpret the action of !j as being linear
although time-dependent, in other words because we did not commit the strategic
error of defining it via (!j$)<= = j ($<< (C) �$== (C))$<=, rather used (11.1)
for the definition, we avoided the nonlinearity. Given the retention of the linearity
in relation to $ in the definition for !j, we can find the Green function and solve
the evolution of d00(C) in terms of the driving term (the last term in Eq.(11.3) that
involves the diagonal part d0(C).

2 Such operators, surely more exotic than garden-variety operators like the Hamiltonian that act
merely on state vectors, are sometimes called superoperators because they act on operators. In
working with them, one must not forget their kryptonite-like weakness that they work only on what
is on their right, and, indeed, on all of what is on the right.
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The application of D instead of (1 � D) to (11.2) yields, for the diagonal part
d
0
(C),

3d
0
(C)

3C

= �8D(!+ + !j (C))d
0
(C) � 8D(!+ + !j)d

00
(C). (11.4)

If we substitute the solution of the o�-diagonal equation we obtained via the Green
function formalism in this diagonal evolution equation, we get

3d
0
(C)

3C

+D! (C)

π
C

0
3B

h
4
�8

Ø
C

B
3C

0
(1�D)! (C

0
)

i
(1 �D)! (B)d

0
(B) =

� 8D! (C)4
�8

Ø
C

B
3C

0
(1�D)! (C

0
)
d
00
(0). (11.5)

We have recombined the two Liouville operators into a single sum for the sake of
space. We continue to keep in mind that the time-dependence in !j (C) requires that
we use time ordering in the integrals.

Typically, this Zwanzig equation (11.5) displays the derivative of the projected
d(C) as being the sum of three terms. But as Zwanzig himself has shown in his first
few papers on the subject, the combination of the diagonalizing nature of D and the
commutation nature of ! (C) makes one of the terms disappear identically. We are
left with the two terms shown, the memory term and the initial value term. The latter
is identically zero if the density matrix is initially diagonal, i.e., if d00(0) = 0).3

The generalized master equation (GME) obeyed by the probabilities %< for such
an initial condition can now be written down explicitly from

3%< (C)

3C

=
π

C

0
3B

’
=

[W<= (C, B)%= (B) �W=< (C, B)%< (B)] , (11.6)

if the density matrix is initially o�-diagonal in the <, = representation. If this condi-
tion is not met, a driving term I< (C) is appended on its right side that arises from the
non-vanishing o�-diagonal elements of the initial density matrix, d(0). The result
(11.6) di�ers in two respects from the usual GMEs that one normally encounters.
One is that the memories W(C, B) are not functions of the di�erence combination
C � B but depend on the two times independently; the other that they depend on
the probabilities themselves. The approximate evaluation of the memory functions
W<= for a spatially extended system may be found elsewhere (Wu and Kenkre,
1989; Kenkre, 2021) along with a number of related results that, while not of direct
relevance here, are quite interesting in their own right. What we are interested in
here are the GME for the two probabilities d11 (C) and d22 (C). With the understand-
ing that the driving terms I1 (C) and I2 (C) vanish identically for the initial condition
that the density matrix is diagonal, the probability equations are, for arbitrary initial
conditions,

3 I have refrained from crossing all the C’s and dotting all the 8’s here because the projection equation
application to the DNLSE has been described in another recently published book Kenkre (2021).
The results and the flow of the logic are, however, important to display here.
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3d11 (C)

3C

= 2+2
π

C

0
3B [d22 (B) � d11 (B)] cos

✓π
C

B

3Ij [d22 (I) � d11 (I)]

◆

+ I1 (C), (11.7a)

3d22 (C)

3C

= 2+2
π

C

0
3B [d11 (B) � d22 (B)] cos

✓π
C

B

3Ij [d11 (I) � d22 (I)]

◆

+ I2 (C). (11.7b)

Expressions for I1,2 (C) can be evaluated from the last term of Eq. (11.5)). In terms
of the initial values of the density matrix element combinations

A0 = [d12 (0) + d21 (0)], @0 = 8[d12 (0) � d21 (0)],

the explicit expressions for I1 (C) and I2 (C) to be respectively added to the GME
equations for %1 (C) and %2 (C) are4

I1 (C) =
✓
�+

q
1 � ?2

0

◆
cos

✓
�0 � j

π
C

0
3I ?(I)

◆
, (11.8a)

I2 (C) =
✓
+

q
1 � ?2

0

◆
cos

✓
�0 � j

π
C

0
3I ?(I)

◆
, (11.8b)

satisfying, as they must, the sum rule I1 +I2 = 0 at all times C. The symbol �0 stands
for tan�1

(A0/@0).
Note that Eq. (11.7) is a simple two-site GME except for the fact that its memories

are functions of the (time integrals of) probability di�erences, thus making the GME
itself certainly nonlinear. What evolution does Eq. (11.7) predict for the probability
di�erence ? = d11 � d22? The answer is obtained by subtracting its two lines to get

3?(C)

3C

+ 4+2
π

C

0
3B ?(B) cos

✓
j

π
C

B

3I ?(I)

◆
= 0. (11.9)

But there is more. If one introduces a new variable b (C) as an integral of the
probability di�erence,

b (C) =
π

C

0
3B ?(B), (11.10)

a remarkable result, certainly unexpected if you are not familiar with it, emerges. We
get a second order di�erential equation for the integral b (C),

3
2
b

3C
2
+

✓
4+2

j

◆
sin(jb) = 0. (11.11)

This equation is identical to the evolution equation of the physical pendulum in
which one has not made the small angle approximation that would simplify it to the

4 For the benefit of those who might compare the expressions to the ones in the original publication,
a typo has been corrected from Eqs. (A7), (A8) of (Wu and Kenkre, 1989) and expressions rewritten
to make them more compact.
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simple harmonic motion of an oscillator.5 Indeed, the explicit solution of (11.11) in
terms of the inverse trigonometric and direct elliptic sine functions may already be
known to you:

b (C) = (2/j) sin�1
[sn (jC/2|4+/j)] .

Di�erentiation of this result gives

?(C) =
3b

3C

= cn (2+C |j/4+) . (11.12)

This result for the probability di�erence in a nonlinear dimer is part of the literature
(see, e.g., Kenkre and Campbell (1986)), is known to satisfy a simple cubic nonlinear
di�erential equation with coe�cients determined by initial conditions in the dimer
(Kenkre and Tsironis, 1987). You, the reader, have learned that already in Chapter 2.

In summary, the application of diagonalizing projections to the discrete nonlinear
Schrödinger equation (1.6) shown here brings out the following points: it is possible
to to apply this linear technique despite the nonlinearity of the starting equation;
the resulting memory functions turn out to be nonlinear in that they depend on the
integrals of the probabilities (actually their di�erences) and are not of the simple
di�erence form. Surprisingly, for the two-site system, the passage from the proba-
bility di�erence ? to its time integral b happens to be a well-known transformation
that changes the cubic nonlinearity in an equation such as (1.2) to a sinusoidal
nonlinearity characteristic of the equation for a physical pendulum, Eq. (11.11).

11.1.2 External Fields Considered via Time-dependent System
Parameters

The e�ect of external fields on a system, for instance consequences of applying an
electric field or thermal gradient to a metal containing carriers of charge or energy,
is typically investigated nowadays with the help of the linear response theory due
to Kubo. In this formalism, the external fields are typically represented by additive
terms in the Hamiltonian of the system, the well-known expression for that additive
part used in the response theory being �_ 5 (C) �̂ where _ and 5 (C) are 2-numbers
signifying a strength parameter and the time-dependence of the applied external
field, respectively, �̂ being an operator typical for the particular application. In the
following I will make very brief remarks about the treatment of our nonlinear system
under the application of external stimuli through a set-up that does not involve this
traditional addition of external terms in the Hamiltonian. Rather our interest will lie
in making the system parameters time- and strength-dependent.

A glance at Eqs. (5.1) shows that we might be focus, thus, on + (C), �(C) and
j(C)... TO BE COMPLETED

5 When Wu and I were publishing our result, we discovered that the equation had also just appeared
in the work of Cruzeiro-Hansson et al. (1988) although not through this memory route. Needless
to say, the publication is duly credited in Wu and Kenkre (1989).
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11.1.3 The Semiclassical Approximation for Anharmonic Vibrations

We have observed numerous features such as silent runs, revivals, recurrences dur-
ing our study of the dimer in interaction with harmonic vibrations, particularly from
the point of view of the validity of the semiclassical approximation. An obvious
question of interest to pose here is whether the introduction of anharmonicity in the
vibrations modifies in any way the answers obtained. Clearly, the focus in such a
study should be not on slight anharmonicities that can be always treated via per-
turbation developments. We must seek an oscillator that can be dialed continuously
from a harmonic nature to behavior that is substantially di�erent from harmonic
behavior. Such an oscillator is the Pöschl-Teller potential (see Fig.11.1). Basically
proportional to the square of a trigonometric tangent, the potential * (G) can be
changed continuously from harmonic into a box potential. One may write it as being
proportional to tan2

(0G) in which case it is clear that it will correspond in a limiting
sense to a (1-dimensional) box of extent c/0. It is convenient to write the constant
of proportionality in a form that allows

* (G) = _(_ � 1)
⇣
\2
0

2
/2<

⌘
tan2

(0G), (11.13)

where < is the mass of the quantum particle subjected to it. Then it is easy to show
(Nieto and Simmons, 1979) that the energy eigenvalues of the Schrödinger equation
may be labeled by integers = = 0, 1, 2, ... as

⇢= =
\2
0

2

2<
(=

2
+ 2=_ + _). (11.14)

We see that, for _ = 1, the energy spectrum is precisely that of a particle of mass
< in a box of length c/0. We also see that if _ ! 1, 0 ! 0 such that _02 remains
a constant of finite value, the spectrum becomes that of a harmonic oscillator. It
is also straightforward (Nieto and Simmons, 1979) to obtain the eigenfunctions
corresponding to the eigenvalues given above as generally products of trigonometric
cosines and associated Legendre functions %V

U
(C) whose arguments are trigonometric

sines,
q= (G) = #=

p
cos 0G %1/2�_

=+_�1/2 (sin 0G). (11.15)

The normalization constant is given by #= =
p
0(= + _)�(= + 2_)/�= + 1.

Thus, we have a system that, through a manipulation of _ from 1 to 1, can be
dialed continuously to introduce anharmonicity to the extent desired. We can use it to
study the e�ects of anharmonicity in vibration on the dynamics of a particle moving
between the two sites of a dimer and simultaneously interacting strongly on the
vibration. What about the particle-vibration interaction? In the standard (harmonic)
case, it is linear in the vibrational amplitude and, consequently, connects eigenstates
that are nearest-neighbor in energy space. In setting up our system we have a choice
of taking either an interaction that is linear in the vibrational amplitude or one
that connects nearest-neighbor states. Let us examine the results of exploring the
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Fig. 11.1 The anharmonic potential for the vibrations in strong interaction with the quantum
particle. It goes under the name of Pöschl-Teller and can be dialed continuously from the harmonic
to the box limit by changing a parameter _: see text. The potential is plotted (in arbitrary but
dimensionless units) versus the displacement from equilibrium G in units of 1/0 and extremes
shown are one near the harmonic limit (solid), and one close to the box limit (dash dot). The
factor (\2

0
2
/2<) has been suppressed from the potential expression in the text for the sake of the

graph. The respective values of _ are 10 (solid) and 1.05 (dash dot). Curves for intermediate cases
would lie between these. When 0G = c/2, the potential blows up to infinity. For _ = 1, it is zero
everywhere in the ‘box’ and becomes infinite at the box wall. Copyright 2021 Vasudev M Kenkre.
All rights reserved.

second choice. Nieto and Simmons (1979) as well as Crawford and Vrscay (1998)
have shown that such a nearest-neighbor connection is provided by a sinusoidal
interaction. The two elements of the Hamiltonian � we must choose are thus clear:
we adopt the Pöschl-Teller potential for the vibrational dynamics and the sinusoid
for the interaction.

From Eq. (11.14), it is clear that the di�erence between the energies of the
first excited state and the ground state of the particle subjected to the Pöschl-Teller
potential is

l0 =
✓
0

2

<

◆ ✓
_ +

1
2

◆
. (11.16)
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In terms of this quantity and of the dimensionless oscillator coordinate I = 0G let
us write the Hamiltonian of the system we wish to study to ascertain the role of
anharmonicity in the vibrations as

� =
⇣
l0

1 + 2_

⌘ ⇥
ĉ

2
I
+ _(_ � 1) tan2

Î

⇤
+ 6l0

s✓
_ +

1
2

◆
?̂ sin Î ++Â, (11.17)

and carry out the program explained in Chapter 9 performed in Salkola et al. (1995)
and in Kenkre et al. (1996a) for the simpler case of harmonic vibrations and linear
interactions. The results of such a task (Raghavan et al., 1999a) are displayed below
even though they did not produce any surprises. It is important to know whether
anharmonicities do or do not introduce substantial modifications.

Fig. 11.2 Semilogarithmic plots of the coupling constant dependence of two key quantities in the
system of Eq. (11.17). In the left panel, the logarithm of the overlap factor between undisplayed
and displaced oscillator ground state functions is plotted as a function of the coupling constant 6
for the Pöschl-Teller potential obtained from our system by freezing transfer (+ = 0). In the right
panel, the logarithm of the tunneling time for the system with transfer is plotted as a function of the
polaron binding energy. The box (harmonic) limit in each case is represented by a dashed (solid)
line. See text for discussion. Modified with permission from figs. 3 and 5 of Ref. (Raghavan et al.,
1999a); copyright (1999) by American Physical Society.

Plots of the variation of the overlap of the displaced ground-state wave-functions
with their undisplayed counterparts with the coupling constant are displayed in
the left panel of Fig. 11.2 to show a comparison in the two extreme limits of the
Pöschl-Teller potential: box (_ ! 1) and harmonic (_ ! 1). In the same Figure,
plots of the variation of the polaron tunneling time scale with the binding energy
are displayed in the right panel. These preliminary displays show that _, thus the
extent of the anharmonicity, certainly controls the dependence as the values of
the coupling constant and binding energy increase from 0, substantial di�erences
appearing quickly. There are, however, no abrupt changes.
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Furthermore, it is easy to see from the expressions for the Hamiltonian itself
that the polaron binding energy is proportional to 62

l in the harmonic oscillator
limit but in the opposite limit of the infinite square well, because the width of the
well remains finite, the lowering of the energy is proportional to 6. This cross-over
behavior of the exponent of 6 from 2 to 1 is quite interesting, its elucidation was made
possible only because of our choice of the Pöschl-Teller potential wherein dialing
the anharmonicity is so straightforward, and has been made crystal-clear graphically
in the original publication (Raghavan et al., 1999a).6

Fig. 11.3 Time dependence of the probability di�erence ? (C) between the two sites, plotted as a
function of the dimensionless time + C , for a usual initial condition that is discussed in the text, for
a particle in strong interaction with vibrations obeying a Pöschl-Teller potential characterized by
an anharmonicity measured by _. The harmonic limit (_! 1) is represented in the left panel and
the box limit (_! 1) in the right panel. The actual values taken for _ are 200 and 1, respectively.
Rows a,b,c represent decreasing values of l0/+ from the top down: 10, 1, and 0.1, respectively.
The semiclassical approximation gets better as expected as one goes down the figure towards
lower l0/+ . Primary characteristics are una�ected by the anharmonicity. See text. Adapted with
permission from figs. 2 and 6 of Ref. (Raghavan et al., 1999a); copyright (1999) by the American
Physical Society.

6 The interested reader should consult the original publication for that graphical demonstration.
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The plot in the right panel of Fig. 11.2, in which the logarithm of the tunneling
time is displayed against the binding energy, shows that, for small values of the
binding energy, the tunneling time for both cases is weakly dependent on the energy.
On the other hand, for larger coupling (binding energy), both show a clear linear
dependence but with di�erent slopes in the two cases. We see that, even for the box
limit of the potential, the polaron tunneling time is exponentially dependent on the
binding energy. The result, well known for harmonic polarons, is a new finding of
our analysis for their anharmonic counterparts.

We explored the system for numerous values of the anharmonicity parameter _
and found that the behavior is continuous from one limit to the other. The initial
condition used for the quantum system, as in the harmonic system studies carried
out in (Salkola et al., 1995; Kenkre et al., 1996a), is the ground state of the particle-
oscillator projected onto the one-site localized part of the Hilbert space, such that
h?̂i(0) = 1. For the semiclassical calculation it is ?(0) = 1, (I)0 = 0, (cI)0 = 0. In
all cases in the plot, the quantum (semiclassical) evolution is indicated by a solid
(dashed) line. The polaron binding energy has been kept constant at 1.5 in units of
+ . The value corresponds to 62

l0/2 in the harmonic limit. We have displayed the
explicit time dependence of the probability di�erence ?(C) in the primary plots of
this investigation in Fig. 11.3. The three rows coming down from the top of the figure
correspond to the three respective values 10, 1 and 0.1 of the ratio l0/+ .

The left panel, marked as the harmonic limit, for which we have taken _ = 200,
shows behavior that we are familiar with from Chapter 9: we have the same situation
with initial conditions, the onset of the recurrences, selftrapping, silent runs and
revivals in the appropriate parameter ranges. For the right panel, marked as the
box limit, _ = 1. The behavior is qualitatively similar to that in the left panel:
the semiclassical approximation incorrectly shows self-trapping while the correct
quantum behavior is complete oscillations between the two sites for high l0/+

(upper two rows). However, the representation is good for the lowest row, for which
l0/+ = 0.1, strengthening the massive oscillator result of Salkola et al. (1995) or the
warnings of (Vitali and Grigolini, 1990; Vitali et al., 1992) and others. In that row,
the behavior is qualitatively similar for the harmonic and the extreme anharmonic
(box) cases except that the silent runs are of very short or zero duration. Our careful
examination of intermediate anharmonicities (_) (not shown here but accessible in
Raghavan et al. (1999a)), establishes unequivocally there are silent runs also for
the anharmonic case: they just become shorter and shorter as one approaches the
extreme box limit, collapses and revivals intruding into each other. Furthermore, the
agreement between semiclassical and quantum evolutions becomes quantitatively
worse as the anharmonicity grows.

The overall conclusion is that self-trapping is robust as a phenomenon and that
it maintains its principal characteristics in the presence of anharmonicity in the
vibrations even if the latter is very strong, although worse agreement between the
exact quantum evolution and its semiclassical approximation is obtained for greater
anharmonicity. Nevertheless, the dynamical tendencies are by and large preserved.
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11.1.4 Boson-Fermion Mixtures and Soliton Propagation

This is the first of three consecutive studies of extended systems. They constitute a
departure from the focus on spatially restricted systems that has pervaded all the rest
of the studies in this book. The first deals with soliton propagation in boson-fermion
mixtures. Our work on this topic was led by Vladimir Konotop in Lisbon, and carried
out primarily by him, Jayanthi Santhanam from my research group and by Budov, a
colleague of Konotop.7 (Santhanam et al., 2006; Bludov et al., 2006)

People have worried about boson-fermion mixtures 4,5 and the variety of proper-
ties that they can exhibit. To complement studies in the literature 8,9 that address a
mixture of a relatively small number of fermions embedded in a much larger bosonic
component, we studied the opposite situation: a relatively small number of bosons
embedded in a much larger fermionic component.

The starting coupled mean-field equations for a mixture of bosons and spin-
polarized fermions with such a dominant fermions component were derived in 6 for
the boson order parameter Psi(rat) and the fermion density n=n0+deltan. Here n0=

From this by rescaling, psi and rho we get eps 5 and 6
3d
Transverse dimension of the Fermi RF is much larger than transverse of Bose RB
Ref 10 multiple scale expansions provide a onecomponetn 1d GrossP ref 11 .

Question we ask is a BoseFermi mixture gives such a reduction?
Section IV shows how a mutolitple scale analysis is possible and results in eq 20

for A and 17,18 also???
FIG1
concluL boson fermion mixture in a strongly anisotropic trap with fermions much

more than bosons
Solitons involve most of the bosons etc Single nonlinear S eon ================

11.1.5 Nonlinear Impurity in an Extended Chain

Let us consider next, a problem that can be regarded as having simultaneously
to do with both a localized system in space and an extended one. Our interest is
in the dynamics of a nonlinear impurity of small spatial extent embedded in an
infinite lattice. As an example, the system could be an infinite linear chain wherein a
quantum mechanical particle moves via nearest-neighbor transfer matrix elements,
there being a single site, considered to be the origin without loss of generality, where
the DNLSE e�ect is operative. My interest in this system originally came from the
doping of host molecular crystals such as anthracene with guest molecules such as
tetracene in the pursuit of sensitized luminescence and of the related phenomenon

7 My own role in this investigation was restricted largely to watching Konotop teach us how this is
done as much as anything.
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of photosynthesis.8 The primary motivation to present the analysis here is to show
how a combination of numerical and analytic methods may be fashioned to solve a
problem not accessible to purely analytic attack.

As is well known, the dynamics of a quasiparticle moving in a linear chain of
infinite extent via nearest-neighbor interactions can be written down analytically
in explicit form involving ordinary Bessel functions. Our interest is in studying a
particle whose amplitude to be at a site < on the linear chain at time C is ⇠< (C) via
the equation of motion9

8

3⇠<

3C

= + (⇠<+1 + ⇠<�1) � X<,0j |⇠0 |
2
⇠0, (11.18)

in notation that should be completely familiar to the reader. We will consider only the
initial condition that the particle occupies the impurity site (origin) at C = 0. It finds
itself with an instantaneously lowered site energy by an amount j relative to all the
other sites in the chain. Those sites have energy 0. The particle is not in resonance
with its neighbors initially but as it attempts to move out of the initial site, the lack
of resonance decreases. The dynamics can then be just as interesting as in the case
of the dimer we have studied thoroughly in earlier Chapters of the book. However,
here the motion outside the impurity site is in a system with infinite extension. This
makes the problem di�cult (actually impossible) to solve by the same methods as
earlier.

If there were no nonlinearity in the system, the impurity at the origin being merely
static, but lower in energy than the rest of the sites in the chain by an amount �, the
equation of motion would be

8

3⇠<

3C

= + (⇠<+1 + ⇠<�1) � X<,0�⇠0, (11.19)

instead of Eq. (11.18). The di�erence, that the site energy is here the given constant
� rather than determined dynamically by the particle probability of occupation itself,
j |⇠0 |

2
(C), is substantial and makes the analytic solution a non-trivial problem.

How would we solve the static impurity problem? A technique, tailored for such
problems, is the so-called defect technique consisting of two steps. The first step is to
write a Green function solution of Eq. (11.19) using the Bessel-function propagators
of the linear chain without the impurity. The second step is to take advantage of
the fact that the impurity is of finite extent to write down an explicit solution. The
technique was used widely by Montroll and collaborators in elucidating the e�ect of
defects in lattices and has been explained in great detail in a di�erent book I published
recently (Kenkre, 2021). The solution of Eq. (11.19) for the initial condition stated
is, in terms of �0, the Bessel function of order zero,

8 The work to be described was done primarily by my then-student David Dunlap also in collab-
oration with my long-time friend and colleague Peter Reineker of Ulm who, on a sabbatical, was
visiting my research group at that time.
9 As usual, we suppress \ and have used capital⇠’s in keeping with the terminology of the original
paper (Dunlap et al., 1993).
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⇠0 (C) = �0 (2+C) + 8�
π

C

0
3B 4

8�B
�0

⇣
2+

p
C
2 � B2

⌘
. (11.20)

Fig. 11.4 Self-trapping transition at the initially occupied impurity site in a 1-dimensional chain
of infinite extent in the upper panel and in a simple cubic 3-dimensional crystal, also of infinite
extent, in the lower panel. The probability of the initially occupied impurity site is plotted versus
the dimensionless time + C for various values of the nonlinearity ratio j/+ . See text. Modified
with permission from figs. 1 and 4 of Ref. (Dunlap et al., 1993); copyright (1993) by American
Physical Society.
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The presence of nonlinearity in our actual problem allows us to perform the first
step of the procedure outlined but not the second. We can state with confidence that
the solution of Eq. (11.18) must satisfy

⇠0 (C) = �0 (2+C) + 8j
π

C

0
3B |⇠0 (B) |

2
⇠0 (B)�0 (2+ (C � B)) . (11.21)

However, an explicit solution does not appear possible because of the appearance of
⇠0 (C) within the integral in a nonlinear form on the right hand side of the equation.

What happens if we carry out a numerical solution along the lines explained in
relation to Fig. 1.1 and the DNLSE without impurity? The answer is displayed in
Fig. 11.4. In the upper panel the results for the problem as stated in a 1-dimensional
chain are shown; the lower panel is a straightforward extension to a 3-dimensional
(simple cubic) crystal.10 Both are plots of the probability to remain at the the initially
occupied impurity site versus the dimensionless time +C for various values of j/+ .

An abrupt self-trapping transition as we vary the nonlinearity ratio j/+ is indi-
cated in both panels. The top curve of the upper panel (1-dimensional chain) shows
self-trapping at |⇠0 (C) |

2
⇡ 0.67 calculated at j/+ = 4.00. As the value of j is

reduced, so is the probability remaining at long times. The next two lower curves are
for j/+ values 3.5 and 3.3. Then come 3.25 (dashed), 3.23 (dotted), 3.22 (solid), 3.21
(dashed) and the lowest 3.20 (dashed). There should be no doubt that self-trapping
occurs for j/+ greater than 3.22.

The reader might want to take special notice now of how one might move between
a blend of numerical and analytic techniques. We see probability oscillations in Fig.
11.4. In order the investigate the transition, let us focus on the recurrence period of
the probability oscillations as we get close to what we suspect as the transition value
of j/+ . On approaching it from the self-trapped side (j/+ > 3.205), the period is
found to become very long as j/+ tended to 3.205. Dunlap et al. (1993) have given
a careful and thorough report of the procedures followed. I recommend the reader to
consult them in detail.

To quantify their observations, they recorded the time g for the first recurrence
in probability as a function of j/+ . A plot of g for j/+ in the neighborhood of 3.2
is shown in Fig. 11.5. It is not easy to determine whether the transition is real. A
true transition would correspond to the recurrence period becoming infinite. For the
nonlinearity ratio j/+ equal to 3.21, it appears there is complete decay of probability
if you look at short times but a longer interaction shows this not to be the case. As
Dunlap et al. (1993) have stated, one can be only sure that, for times C less than
approximately 800/+ one can suggest that there might be a transition that occurs at
a value of the nonlinearity ratio between 3.20 and 3.21.

One argument presented is based on an examination of the dependence of g on the
nonlinearity ratio observed in the neighborhood of 3.2, assuming it can be fitted by

10 It is easy to show that for simple isotropic higher-dimensional extensions (for instance to a simple
square and simple cubic cases in 2 and 3 dimensions respectively), Eq. (11.21) is maintained in
form except for the replacement, both inside the integral and outside, of �0 by [�0 ]

= where = is the
dimensionality of the infinite crystal.
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Fig. 11.5 Determination of whether recurrences of probability oscillations from Fig. 11.4 are really
indicative of an abrupt transition. The oscillation period g extracted from those numerical obser-
vations is built into the dimensionless quantity (1/+ g)1/0.857 and plotted against the nonlinearity
ratio j/+ , the black dots showing the values extracted. Relation (11.22) conjectured in the text
suggests a transition that is indeed abrupt to infinite recurrence time when j/+ attains approxi-
mately the value 3.20, when the fitted straight line hits the x-axis. Modified with permission from
figs. 1 and 4 of Ref. (Dunlap et al., 1993); copyright (1993) by American Physical Society.

a power law, and finding a best fit. It appears that the power law fit can be described
by

+g =


2.924
(j/+) � (j/+)2A

�0.857

, (11.22)

the critical value (j/+)2A of the nonlinearity, thus found empirically, being 3.205.
Equation (11.22) is chock full of information extracted from the numerical work

reflected in Fig. 11.4: From that work comes the form of the relation between+g and
the nonlinearity ratio j/+ . From those numerical results come the numbers 2.924 and
0.857. Finally, that work has given us the critical value (j/+)2A = 3.205. Equation
(11.22) implies that the recurrence period becomes infinite at the critical value of
the nonlinearity and thus signifies an abrupt transition from free to self-trapped
behavior. Fig. 11.5 displays the relation as a straight line making the inspection
process understandable.11

11 There are additional arguments in support of our methodology that we presented in the original
publication that the reader might find interesting. Briefly stated, recognizing that an analytical
(explicit) solution of Eq. (11.21) is not available, we considered an approximate representation
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For obvious reasons, stemming from intellectual interest as well as applications,
this impurity problem that we analyzed in 1992 in the context of sensitized lumi-
nescence and photosynthesis has attracted the attention of a number of investigators.
There is new work that is being done as recently as during the current year with a
fractional operator replacing the standard discrete Laplacian.12 Compare also in this
general connection the discussion I have given in Section 6.4 of global interactions
between an antenna and the reaction center performed by Kenkre and Ku� (1992)
and a study by Molina et al. (1997) of the di�erence between DNLSE consequences
and more general predictions.

11.1.6 Excimer Formation as a Nonlinear problem: a Classical
Treatment

Unlike all other problems studied in this book, this last of the topics investigated is
approached classically. The governing equation is not Schödinger’s for the quantum
amplitude or von Neumann’s for the density matrix but Newton’s for a nonlinear
oscillator. The equation and the quantities calculated are intimately connected, how-
ever, to observables analyzed via quantum mechanics such as the light emission
spectrum. Although the system has similarities to the nonlinear impurity in a crystal
that we analyzed in the preceding Section, the two items that set apart the present
study are the crucial role that nonlinearity in the potential plays here and the fact
that no quantum dynamics is involved. Three of our four original publications on the
subject were part of Dunlap’s Ph.D. dissertation (Dunlap and Kenkre, 1984, 1986a,
1988a), the fourth had Grigolini as a coauthor. (Kenkre et al., 1990)

In contrast to the other investigations described in the book, our excimer work
was strongly motivated by experimental observations. My own contributions to
this subject came from a concerted collaborated analysis over a summer with two
very well-known and accomplished molecular crystal experimentalists from the
University of Stuttgart, H. C. Wolf and his one-time student, and an internationally
respected scientist in his own right, Helmut Port.13 The intense discussions that the
three of us had together led to the unique theoretical model that we developed with
the able implementation skills of David Dunlap who was just starting his research
activities in physics. The model will be found to be well entrenched in experimental
observations and suggestions such as those of Collins and Craig but to be quite

of j |⇠0 (B) |
2 inside the integrand in terms of a simple time-dependent function of increasing

complexity and determined it by a non-standard iterative procedure.
12 See, e.g., Mario Molina, The fractional nonlinear impurity: a Green function approach,
http://arxiv.org/abs/2108.08711.
13 Unfortunately, neither of them is living now. Although both had a serious approach to their
profession, Helmut Port’s quick wit would surface on many an occasion. Here is what he said to
me once when I had been invited at his house for dinner. I was attempting to make small talk and
asked him if he appreciated science fiction. Without blinking an eye, he retorted ‘Oh yes, I like all
the papers you have written.’
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di�erent in flavor from a number of more comprehensive but di�erent investigations
carried out by others Da et al. (1994); Yudson et al. (1994). My reason to describe
it here is because of the simple, di�erent, and instructive role that nonlinearity in
classical dynamics plays in its development.

Structured optical absorption accompanied by a broad structureless emission with
characteristically long lifetimes and dependence of the spectrum on temperarture are
the hallmark of excimers. The process of their formation in crystals such as pyrene
and also in some cases their migration have often been scrutinized. At the time I
began to analyze excimer physics, experimental work had made substantial leaps
in time-resolving excimer formation, 1-4, but theory had lagged behind experiment.
Collins and Craig had invoked a treatment of classical vibrational relaxation in a finite
linear chain with Morse potentials but it was based on a computer simulation and its
function was to select between two configurations of the molecules, one of which
was thought to be a precursor to excimer formation. Borrowing from CC, I decided
to consider the classical relaxation of an oscillator that changes character on being
electronically excited. However, the procedure followed was not to do a computer
simulation for a few molecules but to present a solution to the relaxation problem of
a nonlinear impurity in a classical linear chain. The solution, while numerical, was
accurate to an arbitrary degree. We show in the following the approach first and an
extension to the problem of Y-states (an intriguing peculiarity of excimers in some
materials) next.

Fig. 11.6 Schematic depiction of nonlinearity in the potential required to address excimer spectra.
Reprinted with permission from fig. 1 of Ref. (Dunlap and Kenkre, 1984); copyright (1984) by
Elsevier Publishing.
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Because the vibrational structure of the monomer is reflected in the absorption
spectrum with no contribution from the vibration of the molecular pair that con-
stitutes the excimer vibrations but the emission spectrum is characterized by the
excimer vibration, the transition must be to the tail of the excited state pair potential
(Dunlap and Kenkre, 1984) (see Fig. 11.6). Surely, the forces initially drawing the
molecular pair together must be weak, the pair potential in the crystal must fall o�
extremely quickly, demanding thus that the contracting force be highly nonlinear.
We consider the contraction of the defect pair in an infinite linear chain of molecules
wherein the displacement G< (C) from equilibrium of the <th molecule obeys

"

3
2
G<

3C
2

= � :0 (2G< � G<�1 � G<+1)

� (X<,A � X<,A+1) [:0 (GA � GA+1) �+
0
(GA+1 � GA )] . (11.23)

Here, " is the mass of each molecule, :0 is the chain spring constant, and + 0
(G) is

the derivative of the nonlinear defect potential+ (G) that acts between molecules at A
and A + 1 when one of th the two molecules is excited. It is straightforward to define
H< as the di�erence G<+1 � G<, write a solution for it in the Laplace domain, and
invert it into

HA (C) = [A (C) +
π

C

0
3C

0
q(C � C

0
)⌘[HA (C

0
)] . (11.24)

Here HA (C) is the time domain solution for the departure from equilibrium of the
di�erence GA+1�GA that can be obtained explicitly via a finite di�erence method with
[A (C) as the solution in the absence of the defect spring (that can be written down
analytically in terms of Bessel functions), the ‘memory’ q(C) is (2/l0)�1 (2l0C),
with �1 as the Bessel function of order 1 and l0 =

p
:0/" . The important nonlinear

function⌘ is given from the potential as

⌘[HA (C)] = l2
0HA (C) � (1/")+

0
[HA (C)] . (11.25)

We analyzed several di�erent forms of the nonlinear potential, the Morse potential,
the Rydberg potential and the Beckel-Findley polynomial potential given respectively
in

+ (G) =⇡ (4
�21G

� 24�1G), (11.26a)

+ (G) = � ⇡ (1 + 1G)4
�1G

), (11.26b)

+ (G) =⇡ (1 + 1G)/[G(1 + G
6
)] . (11.26c)

Dunlap’s meticulous work allowed us to determine many relevant aspects of relax-
ation in the time domain and spectra in the frequency domain. Fig. 11.7 shows an
example of the results of some of his work (Dunlap and Kenkre, 1984, 1986a) where
a Morse potential was assumed with :1 = :0.

In this manner, in order to model excimer formation in crystals such as dichloroan-
thracene10 that possess a stack structure we studied linear chains, to study crystals
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Fig. 11.7 Cumulative time-resolved early time emission spectra calculated under the assumption
of a typical shape for the monomer spectrum for several times after excitation: (a) 0, (b) 5/l0 ⌘

5/
p
:0/" , (c) 10/l0, (d) 15/l0, and (e) 20/l0. The last value corresponds to the excimer passing

through the its equilibrium position for the first time. The frequency along the x-axis is in units
of the assumed monomer characteristic frequency. Modified with permission from figs. 1 and 4 of
Ref. (Dunlap and Kenkre, 1986a); copyright (1986) by Elsevier Publications.

such as pyrene25 that consist of preformed dimers we studied chains in which there
are two sites per unit cell.

As especially intriguing aspect of excimer formation that we studied was the phe-
nomenon of Y-states observed, for instance, in U-perylene, and supposedly caused
by the incomplete relaxation of the excimer pair coordinate due to the hindering
of the lattice 13,19,26. In a 1-dimensional system, excimer formation is hindered
by the lattice only in the sense that it provides an e�ective viscosity in which the
excimer must contract. In a higher-dimensional system, however, more restrictive
forces occur given that horizontal, vertical and diagonal interactions simultaneously
occur. We took the spring constants in the horizontal and vertical directions to be
:0 and that in the diagonal direction to be :1. Equation (11.24) emerges again
with, however, the modification that the kernel q(C) is complicated by the interplay
between he horizontal and vertical interactions and the diagonal interactions. See
Fig.11.8. Numerical solution from this higher-dimensional version of Eq. (11.24)
shows rich behavior for several values of :1/:0. The equilibrium excimer-pair sep-
aration increases monotonically with :1/:0 because the neighboring molecules are
interconnected via an infinite number of indirect diagonal paths. These interactions
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Fig. 11.8 The 2-dimensional square lattice with ‘horizontal’ and ‘vertical’ harmonic springs with
spring constant :0, ‘diagonal’ springs with spring constant :1 making an angle \ with the horizontal
axis, and the nonlinear excimer, represented by the explicitly drawn coiled spring, which is turned
on by the process of light absorption. Reproduced with permission from fig. 1 of Ref. Dunlap and
Kenkre (1988a); copyright (1988) by American Physical Society.

tend to oppose the lattice distortion that accompanies the contraction for the excimer
pair, and their e�ect increases with the strength of the diagonal spring.

There is a striking result that comes out of these considerations. The equilibrium
separation of the molecular pair undergoes a sudden transition as :1/:0 is varied.
We proposed this phenomenon as signifying the formation of the Y-state in (Dunlap
and Kenkre, 1988a; Kenkre et al., 1990). In order to understand its essence with
the shortest e�ort expended, let us rewrite Eq. (11.24) with the context expanded
to higher dimensions by symbolically replacing H(C) by Z (C) and (1/")+

0
(HA ) by

D
0
(Z), and crossing over into the Laplace domain where n is the Laplace variable

and tildes denote Laplace transforms. We now have

˜̂(n) Z̃ (n) = �

π
1

0
3C 4

�n C
D
0
[(Z (C)], (11.27)

with

˜̂(n) =
1

q̃(n)
� l

2
0. (11.28)

An Abelian theorem allow us to write down an exact consequence of Eq. (11.27)
for the equilibrium value that the excimer coordinate attains. This is the limit of Z (C)
as C ! 1. What is needed is the simple multiplication of Eq. (11.27) by the Laplace
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variable n and the limit n ! 0. The consequence is

˜̂(0)Z (1) =


1

q̃(0)
� l

2
0

�
Z (1) = �D

0
[Z (1)] . (11.29)

Fig. 11.9 Exact analysis of the emergence of a Y-state based on Eq. (11.29). The dotted curve
represents the nonlinear excimer force and the four solid lines the e�ective restoring force of the
lattice for respective values of l1/l0 as shown. The intersection of the solid lines with the dotted
curve gives the equilibrium excimer coordinate Z at infinite time. Only an Modified with permission
from figs. 1 and 4 of Ref. (Dunlap et al., 1993); copyright (1993) by American Physical Society.

Much has been accomplished. We know the time integral q̃(0) of the propagator
of the lattice without a defect (simply in terms of Bessel functions) and the nonlinear
force �*

0
[Z (1)]. It is entirely straightforward, therefore, to solve Eq. (11.29) to

obtain the equilibrium value of the excimer coordinate. Moreover, the equation gives
us immediately insight into the formation of the Y-state as per our model: the Y-state
appears only when Eq. (11.29) has more than one solution for Z (1). The situation
is precisely as in mean field theories of ferromagnetism!

The physical situation is as follow. At equilibrium, the excimer pair is acted upon
by two forces. The nonlinear excimer pair force is represented by the right hand side
of Eq. (11.29) and tends to pull the molecular pair together. An e�ective restoring
force caused by the lattice tends to oppose the contraction of the molecular pair, is
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represented by the left hand side of Eq. (11.29) and signifies and e�ective spring
constant [1/q̃(0)] � l2

0. If, as in the 1-dimensional chain, hindering interactions
stemming from the (diagonal) :1 springs are absent, 1/q̃(0) equals l2

0, and the
e�ective spring constant ˜̂(0) vanishes. The equilibrium state of the excimer is then
at the minimum of the nonlinear potential+ , and there is only a single excimer state.
That is the E-state. In the presence of the hindering interactions, two e�ects occur,
one of which is the simple shift of the E-state equilibrium coordinate caused by the
addition of the lefthand side term in Eq. (11.29). The other e�ect, which occurs when
the e�ective spring constant ˜̂(0) exceeds a critical value, is that multiple minima in
the total potential D(Z) + ˜̂(0)Z2

/2 appear . The additional minimum in the e�ective
potential when occupied is the Y-state.

Although the topic of the study in this subsection lies on the margins of the book’s
topics, I have included it because of the simple, and yet exciting, physics in terms of
which it has been constructed.14

11.2 Review of Topics Covered in the Book

The time15 has come in the second half of this final Chapter to spend a few wise
words to summarize what we have covered in the book. As I said in the Preface16,
this was a side adventure I happened to take into something that was outside the
mainstream of my research. I have no claims whatsoever to have shared with you,
the reader, any profound insights that the title of the book might have (mis)led you
into anticipating. What I have presented are simple results that have given delight to
me as also to my friends who played along with me in the analysis of these topics.

The general aim of the research described in the book has been to elucidate the
e�ects of the interaction of nonlinearity with quantum mechanics, introduced into the
latter as an approximate representation of the partial dynamics. This has been done by
specifically focusing on systems of small spatial extent. The smallest size is obviously
two sites and it is, therefore, dimers that we concentrated on, although we started the
book with a numerical solution of the DNLSE on a chain of a 100 sites or more. Our
restriction in size was motivated by the ability thereby to obtain exact solutions in
most cases. The central idea was to base our intuition on analytic procedures rather
than numerical. The latter constitute a powerful method of study but always run the
risk of artifacts being confused with actual consequences of the physical system.
The trick of the trade is to make progress by combining insights obtained from exact

14 It has come out directly from the experimental discussions I had with my two departed colleagues
Port and Wolf, and from the unique theoretical skills practiced in all his work by my ex-student
Dave Dunlap. The interested reader will find more in the original publications and the hints given
about work on thermal fluctuations that I started with Paolo Grigolini and that has been briefly
alluded to in Kenkre et al. (1990).
15 Or space! We physicists have Einstein’s assurance that they are not really di�erent.
16 If you stilll have not read the Preface, hurry and go back to it. It is essential in understanding the
message of the rest of my book.
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calculations for unrealistically small systems with insights obtained from numerical
(therefore in a puristic sense always inexact) calculations for larger, realistic, systems.
Even in small systems, however, the need was sometimes felt to use numerical
methods.17 Given that I have young forming theoretical physicists in mind as the
readers of this book, may I suggest that the attitude of shunning numerics is nothing
short of immature ignorance.18 Here are some specific examples from this book.
MORE ime and again I have found it not only necessary but immensely useful even
for ...MORE HERE Mention kenkrewu and other examples of such combined work
and also Dunlap’s scotch tape inf furnaces.

A few words why retaining the focus of the book on systems of small spatial
extent is not at all similar to restricting oneself to toy investigations. One would not
dream of faulting a painter for not undertaking sculpture as well, or take to task
an artist who does only black and white sketches only, for refusing to break his
monochromatic practice. There is plenty of complexity and profundity to drawing
without color or painting on a two-dimensional canvass. There are also plenty of
deep questions of the kind relevant to spin-boson dynamics that relate to a two-state
system behavior. The complexity in such a case comes from the intricacies of the
interactions with phonons. We have seen this throughout the book. A number of
readers of the book will realize it immediately or at least after reading the book.
Those who do not should think about the analogous situation in statistical mechanics
wherein an Ising model provides rich problems for the physicist to solve despite
only two values that a spin at a site takes in the Ising system. The complexity there
comes from the geometry of interactions in an infinite =-dimensional space. The
complexity in our dimers comes from the infinite manifold of the bosons that the
dimer interacts with. Much fundamental research can be, and is, done in the Ising
model without having to employ extensions to Heinseberg, clock, or Potts models.
The primary activity of the theoretical physicist seems to me to be slicing a system
into parts that are significant yet solvable. Without the divide-and-conquer approach
that this entails, the pursuit of theoretical physics would gain little success.

In chapter 1 we met with the DNLSE and learned the graphical tool of po-
tential plots aided by the analytic technique of elliptic functions. We introduced a
pedagogically interesting manner of introducing the latter through a stretching trans-
formation applied to ordinary trigonometric functions. We studied an application to
the familiar physical pendulum oscillating with arbitrarily large amplitudes as well
as the unfamiliar evolution of bacterial population in Petri dishes. In the process
we armed ourselves with cn-dn transitions, Landen and Jaboi transformations and
similar unusual tools for further use.

17 My own training was pure theoretical and I grew up with an antiquated snobbish attitude towards
numerical practices. My wife reminded me the other day that during a walk on the campus at Stony
Brook during my graduate student days, some of my theoretical physicist friends had pointed out
to her the Computer Sciences department and remarked “That is where the not-so-smart people
work.” I am glad I freed myself from such a ridiculously arrogant view as I grew wiser in my work.
18 With the advent of computers on every desk and in a sense in every pocket, this need not be
spelled out in this manner perhaps. Nevertheless, for the rare person who might not have understood
this lesson, I emphasize that numerical methods are as useful and must-employ tool as analytical
although the character of the tools are di�erent.
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In chapter 2 we applied the tools to understand completely the occurrence of the
self trapping transition in the DNLSE, identifying probability di�erence oscillations
on both sides of the resonant dimer as free motion and those oscillations when
restricted to one side only as self-trapped motion. XXXXXX MENTION THE AL
SCOTT CONVERSATIO about the use of KC.

In chapter 3 we studied the interplay of initial phases on the evolution in a
non-linear dimer...

In chapter 4 we saw the striking e�ects of nonlinearity that are more complex than
cubic we began the study in the particular context of rotational polarons but extended
the investigation to many di�erent aspects including his statuses in chapter 5 return to
the cubic nonlinearity and studied the non-resident that is non-degenerate nonlinear
dimer in chapter 6 we studied a bit of systems of great especially extent but restricted
ourselves to global interactions both in the context of tremors in inmates and in
trapping of excitation by an antenna in chapter 7 will begin the study of relaxation
that is not infinitely first and then chapter 8 we studied thermal e�ects into di�erent
ways in chapter 9 we investigated the microscopic arguments for Poloron whatever
in chapter 10 we studied the gross bitterThe gross but I was scared equation for the
tunneling a Bose Einstein condensates finally a number of miscellaneous topics were
covered in chapter 11 we have in this man that tried to move around many di�erent
and di�cult topics about the interplay of non-linearity with quantum mechanics

.... TO BE COMPLETED What is on the wish-list? EXAMPLES AND HINTS?

11.3 Parting Words

Robert Frost is one of my favorite poets in the English language. While we have
pranced around the topics that I have described in the interplay of quantum mechan-
ics with nonlinearity, wondering about the validity of adding nonlinear terms to the
linear structure of quantum mechanics and marveling at the (sometimes weird but
always intriguing) consequences, pondering about the e�cacy of procedures such
as the memory method while questioning the justification for their success, and con-
templating, surely with some anxiety, the legitimacy of approximations such as the
semiclassical, I have been continually reminded, and quite acutely, of Frost’s lines
in his poem The Secret Sits:

We dance round in a ring and suppose
But the Secret sits in the middle and knows.
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