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Abstract:
This chapter is a short introduction into the data analysis pipeline, which is typically utilized to analyze Ra-
man spectra. We empathized in the chapter that this data analysis pipeline must be tailored to the specific
application of interest. Nevertheless, the tailored data analysis pipeline consists always of the same general
procedures applied sequentially. The utilized procedures correct for artefacts, standardize the measured spec-
tral data and translate the spectroscopic signals into higher level information. These computational procedures
can be arranged into separate groups namely data pre-treatment, pre-processing and modeling. Thereby the
pre-treatment aims to correct for non-sample-dependent artefacts, like cosmic spikes and contributions of the
measurement device. The block of procedures, which needs to be applied next, is called pre-processing. This
group consists of smoothing, baseline correction, normalization and dimension reduction. Thereafter, the anal-
ysis model is constructed and the performance of the models is evaluated. Every data analysis pipeline should
be composed of procedures of these three groups and we describe every group in this chapter. After the de-
scription of data pre-treatment, pre-processing and modeling, we summarized trends in the analysis of Raman
spectra namely model transfer approaches and data fusion. At the end of the chapter we tried to condense the
whole chapter into guidelines for the analysis of Raman spectra.
Keywords: Raman spectroscopic data analysis, spectral preprocessing, spectral standardization, machine learn-
ing for spectral data, data analysis workflow
DOI: 10.1515/psr-2017-0043

1 General analysis pipeline

Since the early 70s the potential of Raman spectroscopy for the characterization of biological samples like DNA,
proteins and lipids was recognized. Nevertheless, it took since the 2000s until the potential could be utilized.
One reason was the development of components needed for the application of Raman spectroscopy for biologi-
cal samples (see chapter 2). The other reason is that powerful statistical and computational methods are needed
in order to translate the Raman spectral signals into meaningful bio-medical information. To do so powerful
computers are needed, which can deal with large data sets. Additionally, tailored data analysis pipelines for
the analysis of Raman spectra must be developed [1], which allow the application of Raman spectroscopy for
real-world tasks. Possible applications include crystals and minerals (chapter 5), pharmacy (chapter 6), fine
particles (chapter 7), medicine (chapter 8) archeological investigations (chapter 9) and forensics (chapter 10).

The data analysis pipeline must be tailored to the specific application of interest and is composed of com-
putational procedures to correct for artefacts, standardize the measured spectral data and to translate the spec-
troscopic signals into higher level information. The procedures can be arranged in separate groups namely
data pre-treatment, pre-processing and modeling. The pre-treatment aims to correct for non-sample-dependent
artefacts, like spikes and contributions of the measurement device. This will be described in Section 2. The next
block of procedures to be applied is called pre-processing and include smoothing, baseline correction, normal-
ization and dimension reduction. These methods are described in Section 3. Thereafter, the analysis model is
constructed and it is evaluated, which will be described in Section 4. Every data analysis pipeline is composed
of procedures of these three groups and the whole data pipeline to analyze Raman spectra is sketched in Figure
1. In Section 5 we will shortly describe new trends in the analysis of Raman spectra and in Section 6 a summary
will be given, which focuses on dos and don’ts.

Thomas Bocklitz is the corresponding author.
Oleg Ryabchykov and Shuxia Guo share themain authorship.
© 2018Walter de Gruyter GmbH, Berlin/Boston.
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Figure 1: Data analysis pipeline for Raman spectra. A data pipeline used to analyze Raman spectroscopic data is shown.
It is composed of pre-treatment, pre-processing and analysis procedures. The pretreatment steps remove corrupting
effects which are not related to the sample and the preprocessing steps standardize the data by removing sample re-
lated contributions from the data. At the end of the pipeline, statistical models or machine learning approaches are con-
structed. These models are evaluated and there may be a parameter optimization based on the model outcome. All these
steps aim a robust prediction of the constructed model.

2 Data pretreatment

Like described earlier, the analysis of Raman spectra starts with a pre-treatment of the measured Raman spec-
tra, which is necessary because the measured Raman spectra contain disturbing contributions and artefacts.
These contributions corrupt the spectral information of the sample and prevent a reliable analysis. Thus, cor-
rection procedures need to be carried out. The most disturbing contributions within Raman spectra, which are
not sample dependent, are cosmic spikes and contributions caused by experimental parameters and/or the
measurement device itself. In order to deal with these contributions a spike correction, a wavenumber and an
intensity calibration are needed. These methods are described in the following subsections. The description
starts with the spike correction, which should be carried out at the beginning of the data pipeline for Raman
spectra. Thereafter a wavenumber calibration needs to be done and an optional intensity calibration might be
performed.

2.1 Spike correction

In contrast to other corrupting effects in Raman spectroscopy, a presence of cosmic ray spikes in the spectro-
scopic data does not depend on the sample, laser, or spectrometer. Spikes appear at random positions in the
data as values with large intensities (Figure 4). They occur when high-energetic cosmic particles hit the de-
tector. In the CCD these particles generate electrons, which are read out along with the charges induced by
the energy of Raman scattered photons. Therefore, cosmic particles introduce narrow features of high inten-
sity, called spikes. Their positions are random and do not correspond to the wavenumbers directly. Typically,
a spike appears within just one pixel or a few pixels.

The cosmic ray noise may affect the subsequent analysis, especially the normalization step. Therefore, many
commercial devices perform multiple measurements in order to calculate an average spectrum. This approach
applies when a small data set is acquired because it decreases all types of noise, including spikes. Unfortunately,
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it leads to the measurement time increase that is unsuitable for the acquisition of large spectral maps. Another
method which works for small data sets is a manual removal of spikes found by visual inspection of the spectra.
A drawback of manual spikes removal is that massive data sets cannot be processed by an operator within
a reasonable time. To overcome this issue and automate the spike removal in massive data sets, specialized
computational approaches were developed.

The simplest spike correction procedure is a median smoothing of the spectra. Unfortunately, besides spikes,
this method filters and changes sharp spectral bands. Another option is a wavelet or Gabor transform with a
suppressing of the coefficients corresponding to the spikes. Because spectral bands and spikes share the same
frequencies, this approach can also corrupt the spectral information [2].

Besides application as filtering methods, wavelet or Gabor transform can be used to obtain a quantitative
marker, related to the sharpness of features in the spectra. Then, spikes can be detected based on that marker
and eliminated. Similarly, the marker can be obtained from nearest neighbors comparisons within the spectrum,
or by applying a discrete Laplace operator [3]. If time series or scans are analyzed, the changes from spectrum
to spectrum are typically small and the spikes detection methods can utilize the extra dimensions. Hence,
2-dimensional wavelets, comparison with the nearest neighbors within the spectral matrix or 2-dimensional
Laplacian operator can be applied to enhance the reliability of the cosmic ray noise markers.

After extracting the quantitative marker, the spikes need to be located by setting a threshold. To estimate
the threshold, the marker values can be compared to their standard deviation. For more robust comparison, the
lowest and largest values may be excluded from the calculation of the standard deviation. Typically, a spike is
considered to be present, if the response is higher than a preset threshold like three times the standard deviation.
However, for some noise characteristics and sharpness of the Raman bands, this threshold may not be optimal.
To optimize cosmic ray noise removal, the threshold should be selected depending on the distribution of the
marker values [4].

2.2 Spectrometer calibration

The next step in the pre-treatment of Raman spectra is the spectrometer calibration. Ideally, the Raman spec-
troscopic signals should have high reproducibility and consistency. That means the measurement should be
independent of the device and its instrumental configurations. In reality, however, a recorded Raman spectrum
is affected by measurement conditions and does not solely reflect the sample. Variations in instruments, tem-
perature, physical and chemical states of samples (e. g. solid or liquid) can lead to substantial spectral changes
like wavenumber shifts and intensity variations [5, 6]. Furthermore, the instrumental response function changes
over time. Raman spectra measured with a time delay can be different, even if they are measured on identical
samples and under the same conditions. A calibration procedure is often required to reduce the introduced
spectral changes, which includes wavenumber calibration and intensity calibration, as described in the follow-
ing [5–7].

2.2.1 Wavenumber calibration

A CCD detector is typically used in a Raman spectrometer to collect Raman scattered photons at different
frequencies (i. e. wavenumbers) with a different pixel (Figure 7a). Each spectrometer has a defined relation be-
tween wavenumber and pixel position [8]. However, the relation is sensitive to environmental and instrumental
changes, like variations of temperature, the replacement of an instrumental component, or drifts of the instru-
ment over-time. As a consequence, a CCD pixel can correspond to a different wavenumber. Hence the Raman
spectrum is not recorded with the correct wavenumber axis, which manifests itself as wavenumber shifts com-
pared to the theoretical values. This is shown by the two spectra in Figure 7a. The wavenumber shifts make it
problematic to compare Raman spectra measured under different conditions or analyze them together.

A wavenumber calibration is conducted to find the correct wavenumber axis and thus remove the wavenum-
ber shifts. To do so, a standard material with well-defined Raman bands is measured before measuring real sam-
ples. As shown in Figure 7b, the positions of these known Raman bands are located on the measured Raman
spectrum. Thereafter the wavenumber differences between the observed and theoretical Raman bands are cal-
culated. Based on these differences a parametric function is fitted and interpolated to all recorded wavenumber
positions forming the wavenumber axis. Provided the Raman spectra of the standard material and the sample
spectra share the same wavenumber axis, the wavenumber axis of the Raman spectra can be corrected by the
obtained correction function, which removes the undesired wavenumber shifts.

The precision of wavenumber calibration is dependent on several factors [7]. Among those a careful selection
of the standard material is highly important. The known Raman bands of the standard material need to be
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densely distributed and cover the whole spectral range of interest. For biological applications the bands of the
standard material should cover the fingerprint region and the CH-stretching region. Additionally, the number
of Raman bands needs to be sufficient to stably interpolate the correction function to the whole spectral range.
Materials that can be used for wavenumber calibration and their tabulated Raman bands are available in [9,
10]. One widely applied example in biological studies is 4-acetamedophenol (Figure 7b).

Other influential factors for a precise wavenumber calibration are the quality of the peak searching and the
subsequent fitting of the correction function. For the first aspect, the wavenumber positions of tabled Raman
bands are located by interrogating a neighborhood of a given Raman band. The result can be the peak point of
the neighborhood or the peak point of a Gaussian or Lorenz curve fitted to this neighborhood. For the second
aspect, the correction function is typically fitted as a polynomial with a degree of three to five. Polynomials
with higher degrees are not recommended.

2.2.2 Intensity calibration

The intensity of a recorded Raman spectrum is the product of the true Raman scattered intensity (including
baseline intensities) and the intensity response function of an instrument (Figure 7c) [7, 11]. In principle, quan-
titative and qualitative studies can be performed without considering this fact as long as the intensity response
function remains unchanged over the measurements. However, the intensity response function does change
with instrumental and environmental factors like excitation wavelength change, detector replacement, changes
of the sampling geometry, temperature, and so forth. The intensity response function of the same instrument
can also change over time. Consequently, the intensities of recorded Raman spectra vary from instrument to
instrument, condition to condition, and time to time. Such intensity variations can be ignored in most qualita-
tive studies. For quantitative analyses and the comparison with a spectral library, the influence of the intensity
variations becomes a critical issue and has to be corrected.

Therefore, intensity calibration is required, which corrects the recorded Raman spectrum with the intensity
response function. Similar to wavenumber calibration, the intensity calibration also needs a standard material
with known emission at different frequencies. The intensity response function is considered unchanged dur-
ing the measurements of the standard material and actual samples, given they are measured under the same
condition. As illustrated in Figure 7c and d, the procedure includes three steps. (1) The emission of a standard
material is measured under the same condition as for the samples of interest. (2) The intensity response func-
tion is calculated as the ratio between the measured and theoretical emission of this standard material. (3) The
Raman intensities of actual samples are corrected by dividing with the calculated intensity response function
[5].

The efficiency of intensity calibration largely relies on the standard material. An ideal standard material
should be homogeneous and give reproducible emission over broad wavenumber range. Existent standard
materials (SRM) can be either a black-body radiator or a luminescence standard; both are available at NIST
(National Institute of Standards & Technology, Gaithersburg, MD, USA) [12]. Black-body radiators are less of-
ten employed due to stability issues and difficulties to duplicate the sampling condition. The luminescence
standards are more widely utilized in Raman spectroscopy. More details are beyond the scope of this chapter
and interested readers are referred to [7, 11].

Above all, spectrometer calibration is proven to improve the results of the statistical analysis for datasets
measured under different conditions, thanks to the improved spectral consistency over different measurements
[13]. However, calibration cannot completely remove all undesired conditional relevant spectral variations [6,
14], which originates from multiple reasons including inaccessibility of a perfect standard material and un-
avoidable changes for measuring the standard material and the samples. The remaining spectral variations can
still be disturbing for subsequent analysis and have to be handled. This leads to the topic of model transfer,
which will be described in Section 5.1.

3 Data preprocessing

After the pre-treatment is carried out and artefacts of the measurement are corrected for, the pre-processing
needs to be performed [15]. In this part sample related artifacts and sample dependent spectral contributions
are corrected, leading to a standardization of the spectra. The most important correction procedure is a baseline
correction, because the fluorescence background might be orders of magnitude stronger than the Raman signal.
Before (or after) the baseline correction a smoothing can be carried out to correct noise contributions, but this
is rather an optional step. Nevertheless, a few baseline correction procedures need a smoothed spectrum to

4
Brought to you by | University of Sussex Library

Authenticated
Download Date | 9/25/18 3:44 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Ryabchykov et al.

construct a reliable baseline estimate. After these corrections are carried out, a normalization is performed to
statistical standardize the spectra and a dimension reduction is done. The last step can also be done directly
within the statistical model, e. g. some methods doing this implicitly. Nevertheless, in principle, it is advisable
to work with a lower dimensional representation of the spectra. In the following, we describe all parts of the
pre-processing starting with smoothing procedures.

3.1 Smoothing

There are various types of noise that corrupt Raman spectra. They can be categorized into groups according to
the source of the noise or according to the appearance in the data. However, as the cosmic ray noise stands out
from the other types and it was already described in Section 2.1, we will not discuss it here.

In contrast to cosmic spike noise, the random noise in a Raman spectrum can be additive or intensity de-
pendent. The additive noise has a Gaussian distribution and does not depend on the signal intensity. It cor-
responds mostly to the detector’s dark current and readout noise. On another side, the intensity dependent
noise increases with increasing signal intensity and follows the Poisson distribution. To suppress this inten-
sity dependent noise, it is important to plan the experiment in a way to keep the intensity of a fluorescence
background low.

Although adjusted measurement conditions can minimize the noise, a completely noise-free spectrum can-
not be measured. The noise in measured spectra can affect the baseline correction, normalization and detection
of peak positions. To reduce the noise and make the interpretation of spectra easier, spectral smoothing can be
applied.

Prominent smoothing procedures are Savitzky-Golay, mean, Gaussian, and median filtering. Each method
has its own specifics. The Savitzky-Golay smoothing [16], which is based on the least square fitting, is the
most effective in preserving the peaks from corruption. On the other side, mean and Gaussian filters allow an
efficient de-noising, and the median filter allows removing outliers from the spectrum. Although any filtering
may remove parts of useful spectral information along with the noise, the corruption of the spectra can be
avoided completely, if the size of the data set is large enough. In large data sets, a smooth appearance of spectra
can be obtained by averaging over a large number of spectra. The influence of noise on the further analysis can
also be reduced by a dimension reduction. To preserve the data from corruption, filtering should be avoided if
there is no specific reason for filtering and large data sets are analyzed.

3.2 Background correction

There are two different types of baseline correction procedures in Raman spectroscopy: (1) subtracting the
signal with the shutter closed from the spectrum and (2) subtracting the mathematically estimated baseline.
For further discussion and differentiation between these both methods, the second method is referred to as a
baseline correction. The baseline correction is of high importance for standardization of the spectral data when
the samples feature a fluorescent background.

Estimating of the fluorescent background mathematically is based on the fact that fluorescence signal is
broader than Raman spectral bands. Based on this property, a variety of algorithms for baseline correction
were developed. Among the most typical ones (Figure 2a) we can highlight the modified polynomial fit [17], the
asymmetric least squares baseline estimation [18], and the statistics-sensitive non-linear iterative peak-clipping
(SNIP) algorithm [19]. The last one, in contrast to the others, does not lead to oscillations of the baseline at the
edges of the spectral interval. For a better performance of the SNIP baseline algorithm, the estimation should
be carried out based on a smoothed spectrum. However, this estimated baseline can be subtracted from the
non-smoothed spectrum, preserving the features that could be filtered out by smoothing.
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Figure 2: (a) Examples of background estimation. An example spectrum is shown in black color and the measured back-
ground signal is shown in red color. The other lines depict estimation of the fluorescence background by means of vari-
ous baseline correction methods. (b) Model-based preprocessing. The spectrum after the data pretreatment is shown in
green. For standardizing the spectra, an extended multiplicative scatter correction (EMSC) can be applied. The reference,
which is typically an average spectrum over the data set, is depicted in red color, and the corrected spectrum is shown in
green color.

If the variations of the Raman signals within the data set are expected to be small, a model-based preprocess-
ing approach can be used. For example, an extended multiplicative scatter correction (EMSC) [20] is a powerful
preprocessing tool that standardizes spectra according to chosen reference spectrum (Figure 2b). An additional
advantage of this method is that further normalization is not required and the replicate variations within the
data can be taken into account.

Both approaches, namely model-based preprocessing and baseline correction methods, should eliminate the
background contribution of the spectra. Therefore, it is highly important to optimize their parameters based
on the complexity of the background. Commonly the corrected spectra are investigated visually to estimate
the goodness of the correction. A more robust approach is the introduction of a quantitative marker for the
quality of baseline correction [21]. This marker should be based on expert knowledge about the spectroscopic
data, such as regions where no background is expected and where the Raman spectroscopic signals should
be located. If these regions influence the parameter differently, the correction approach, which features the
extremum (maximum or minimum value) of the marker, would correspond to the optimal preprocessing.

3.3 Normalization

After the baseline correction, the Raman spectra become more standardized and in some cases can be analyzed
directly. Unfortunately, the intensity variations of Raman spectra between investigated samples and even within
spectral maps can be dramatic due to the changes in focusing and other experimental factors. An elimination
of this effect is possible by applying a normalization step. Out of a huge range of normalization techniques, a
few methods are commonly applied: vector normalization, normalization to the integrated spectral intensity,
standard normal variate (SNV) and min-max scaling [22].

The vector normalization is performed by dividing the spectrum by the square root of the sum of the squared
spectral intensities. It is conceptually similar to the root mean square normalization. This normalization can be
also performed separately for different spectral regions, which could be needed in specific cases. Thus, in the
analysis of biological samples, such as bacteria or fungi, better performance may be achieved by normalizing
the fingerprint region and the CH-stretching region separately. As well as vector normalization, the normal-
ization to the integrated spectral intensity, or area normalization, can be performed separately for different
wavenumber regions. Besides that, the entire spectrum can be normalized to the intensity of a specific band,
which is stable within the dataset. Furthermore, the l1-normalization [23] is similar to the area normalization
but operates with absolute values. So, in the case of l1-norm, normalization to the integrated absolute spectral
intensity is performed.

The next typical normalization approach is SNV scaling. It is performed by subtracting the mean intensity
from the spectra and then dividing the result by the standard deviation of the spectrum. This method removes
the constant background from the data. Thus, SNV is suitable to be applied without preliminary baseline cor-
rection in cases of a simple constant background.

Another scaling which eliminates the constant background is min-max normalization. It is performed by
subtracting the minimum value of the spectrum and then dividing it by the maximum value of the result-
ing spectrum. This scaling approach is easy to use, but it is more sensitive to noise than other normalization
methods.

Alternatively to normalization and scaling approaches, a model-based preprocessing, such as EMSC can be
used, which was already mentioned in the Section 3.2 (Figure 2b). This approach does not require additional
normalization because it combines both baseline correction and normalization.

3.4 Dimension reduction

Raman spectral datasets are mostly composed of a large number of variables, which poses challenges for a sta-
tistical analysis in terms of generalization performance as well as computational effort. A dimension reduction
is needed to seek for a lower-dimensional representation of the original dataset without significantly losing key
information [24]. The most straightforward way is to choose only the peak positions of Raman bands (probably
together with their neighboring data points). This can be combined with a peak fitting procedure. However,
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this approach is not applicable if the Raman bands are unknown a priori, which is often the case. Hereby we
briefly introduce more advanced approaches that have been widely applied.

Existent dimension reduction approaches can be categorized based on two properties. On the one hand,
a lower-dimensional representation can be found with or without the presence of response variables such as
group information or concentration of certain chemical components. The respective approaches are termed su-
pervised and unsupervised dimension reduction approaches. On the other hand, the lower-dimensional rep-
resentation can be based on the same variable space as the original data or based on a transformed space of the
original data. Accordingly, the approaches are termed feature selection and feature extraction, respectively. A
dimension reduction technique features both aspects, for instance, a supervised feature selection method.

Principal component analysis (PCA) is the most commonly applied unsupervised feature extraction method
and the PCA model can be written as X = TV𝑇 + e. The original dataset X ∈ ℝ𝑚𝑚𝑚,𝑞𝑞𝑞 is mapped onto
r(𝑟 = min (𝑚, 𝑞)) uncorrelated vectors 𝑉𝑉𝑉𝑗, namely the principal components (PC) or loadings. Each PC rep-
resents a different source of variances in X, with the largest variance in the first PC, the second largest in the
second PC, and so forth. The calculation is achieved by a singular value decomposition on X or an Eigen value
decomposition on the covariance matrix (X𝑇X). The loadings 𝑉𝑉𝑉𝑗 (𝑛 ≤ 𝑗 ≤ 𝑟) are usually removed, because they
mainly correspond to noise and are irrelevant to further analysis. In this way, the dataset X is represented by
a lower dimensional score matrix (T𝑚,𝑛) and the corresponding error is denoted as e. Besides PCA, other un-
supervised feature extraction approaches include independent component analysis and non-negative matrix
factorization [25]. In particular, multivariate curve resolution alternating least squares (MCR-ALS) has shown
its power in spectral analysis due to its capability of decomposing spectroscopic mixtures into multiple pure
components and their concentrations. The concentration maxtrix can be used as scores for subsequent qual-
itative and quantitative analysis. By applying different constraints like non-negativity, unimodality and local
rank, MCR-ALS can provide physically and chemically meaningful decomposition [26, 27]. Another commonly
applied dimension reduction method is partial least squares (PLS) modeling. It is a supervised feature extrac-
tion method and bears some relation to PCA. Hereby the matrices of predictors (X ∈ ℝ𝑚𝑚𝑚,𝑞𝑞𝑞) and responses
(Y ∈ ℝ𝑚𝑚𝑚,𝑝𝑝𝑝) are decomposed as X = TP𝑇 + e1, Y = UQ𝑇 + e2. The decomposition is performed so that the
covariance between T and U is maximized. The dataset X is transferred into a lower-dimensional score matrix
T𝑚,𝑛 (𝑛 < min (𝑚, 𝑞)) by using the first n latent variables. All these described methods share the similarity that
they decompose the observed dataset as a linear combination of N vectors and are called factor methods [28].
Other feature extraction methods like wavelet transform are also used in some investigations [29].

Unlike feature extraction, feature selection works by choosing variables that perform the best according to a
predefined metric [24]. It has been well proven that a variable that is completely useless by itself can be signifi-
cantly useful in combination with other variables. Hence a subset of variables is often selected simultaneously in
practice. Approaches of subset selection include three categories: wrapper, filtering, and embedded methods.
With wrapper methods, the optimal feature subset is selected to obtain the best prediction on data independent
of the training data. Wrapper methods are computationally expensive due to the requirement of model training.
Filter methods select a feature subset according to a certain metric that is independent of subsequently applied
statistical models, for example, mutual information, Pearson’s correlation coefficient, Fisher’s discriminant ra-
tio, or results from statistical tests. Filter methods are advantageous in terms of computational cost but they
are less powerful to build a good predictive model. Nonetheless, filter methods can be used as a pre-selection
prior wrapper methods. Embedded methods conduct feature selection as a part of model construction. This
can be achieved by enforcing most coefficients of the model to be zero, like in the cases of LASSO [30] and
sparse PLS [31]. In addition, feature selection can also be performed based on the variable weights/importance
given by statistical models like support vector machine and random forest (RF). In all cases of feature selection
approaches, a search procedure for feature subsets has to be utilized, be it genetic algorithms, simulated an-
nealing or greedy search (i. e. forward/backward feature selection). For wrapper and embedded approaches, a
way of assessing the prediction performance has to be known as well, which overlaps with the issue of model
selection and is outlined in the following section.

Besides typical factor methods and feature selection, it is worth to note that nonlinear dimension reduction
approaches have also been reported, for example, Isomap [32], locally linear embedding (LLE) [33, 34], feature
learning with auto-encoder and other neural network framework [35, 36].

A common question in terms of dimension reduction is to find the best dimension, which typically refers to
the optimal number of components in feature extraction or the best feature subset in feature selection. This task
leads to the topic of model selection/optimization. In practice, it is achieved by searching for a trade-off between
error and variance [37]. That is to say, to find a compromise between the error on the training data as well as a
good generalization performance on test data. A routine procedure is to split the available dataset into training
and validation data and optimize the model by minimizing the prediction error of the validation data. Figure
3 illustrates an example of dimension reduction conducted with a factor method, where the original dataset
(ℝ𝑘×𝑚) is reduced to ℝ𝑘×𝑑. The training and validation data is represented by blue and green blocks, respectively.
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Dimension reduction and statistical modeling are conducted with the training data only. The validation data is
predicted afterward. The performance of the prediction is benchmarked by a pre-determined metric. To get a
more stable optimization, a cross-validation is often applied [38], where the dataset is re-split into training and
validation datasets for several times. The metric of the prediction is averaged over the splits to determine the
optimal dimension (d).

Figure 3: Workflow of dimension reduction and statistical modeling. The dimension reduction can be done with factor
method like PCA. The three data blocks shown in blue, green, and red represent training, validation, and testing dataset,
respectively. The training dataset is used to build the model. Parameters of the model (such as the number of princi-
pal components of the PCA, d) are optimized based on the prediction on the validation dataset (green). Afterwards, the
model is evaluated according to the prediction on the testing dataset (red).

A crucial issue to find the best dimension is that the optimal result of dimension reduction is dependent
on the model applied subsequently. Therefore, the optimization has to be conducted for dimension reduction
and the subsequent model altogether, like in Figure 3. Another critical issue is that after the optimization, an
additional validation is necessary to evaluate the performance of the optimized model, namely, the external
validation. The normal way is to predict data that is not used as training or validation data (red block in Figure
3). In this case, the unknown data must be excluded during the model construction and optimization, especially
if supervised dimension reduction methods are employed [39]. More details on this topic can be found in Section
4.3 of this chapter.

Figure 4: Cosmic ray noise. On the left side unprocessed Raman spectra containing spikes are shown. On the right side
these spectra are shown in red and the corrected spectra are plotted over them in black. Therefore, only the spikes are
visible in red color.

4 Models

After the Raman spectra are pretreated and preprocessed, statistical models are applied in order to extract
high-level information, such as concentrations of substances, distribution of substances, disease markers or
sample types. The so-called statistical methods aim to translate the standardized Raman spectra into high-level
information of interest, which can be further used by chemists, biologists and physicians. As most of these
methods have a statistical origin we call them statistical methods even though a few are developed within the
framework of machine learning [40].
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The statistical methods applied for the analysis of Raman spectra are standard techniques and we group
them according to their application scenario. We will first introduce clustering algorithms and unmixing pro-
cedures utilized for image generation. It should be noted here that the methods for dimension reduction can be
utilized for the image generation as well. Thereafter we describe supervised methods including classification
models for diagnostics and regression procedures for analytics [1].

4.1 Clustering and unmixing for imaging

There are two major clustering algorithm types: hard clustering and fuzzy clustering. In the former a spec-
trum belongs to one certain cluster and no any other clusters. The latter methods are related to unmixing. A
spectrum belongs to multiple clusters to a certain extent, which is called cluster membership. Both types of
clustering methods are widely used in Raman spectroscopy, especially for imaging purposes to produce an
overview. The most often applied clustering algorithms are k-means clustering and hierarchical clustering [41].
The k-means clustering starts with a random cluster distribution of k clusters. Then the distance of all spectra to
the cluster mean spectra are evaluated and the spectra are resorted corresponding to the minimal distance. The
procedure should be performed for multiple times because the algorithm is greedy. The most common version
of hierarchical clustering is the agglomerative clustering, where Raman spectra are merged to clusters until only
one cluster exists [40]. As described above there are also fuzzy clustering versions like fuzzy c-means clustering
[42], which is the extension of the hard k-means clustering. If the task is to determine mixture compositions,
unmixing methods are the ideal tools. To extract pure components from the data without a training dataset the
so-called end-member extraction methods were developed. They extract the most “extreme” spectra in a spe-
cific sense from the data. Methods that are commonly applied for end-member extraction are N-FINDR [41] and
Vertex Component Analysis (VCA) [41]. Besides these techniques the multivariate curve resolution-alternating
least squares (MCR-ALS) method gains more and more attention due to the incorporation of different con-
straints and additional knowledge about the data [27].

4.2 Classification for diagnostics and regression models for analytics

If no training data with reference values are available, clustering or unmixing are the only techniques which can
be applied. If training data with reference values are available, supervised machine learning algorithms, like re-
gression or classification models, can be applied to extract high-level information [43]. Linear classification and
regression methods are frequently applied due to their simplicity and robustness. Even though linear models
often perform well, in many cases more powerful techniques are needed. Among those the most often utilized
ones are kernel support vector machines (SVMs) and artificial neural networks [43]. Especially deep artificial
neural network are powerful emerging techniques for classification and regression [44]. Another powerful clas-
sification and regression algorithm is the random forest (RF) model, which is an ensemble based method [45].
RF constructs a pre-defined number of random decision trees and every tree is able to predict. The output of
the whole RF is generated by a voting procedure at the end. While certain models like SVMs or ANNs can be
used intrinsically as classification and regression model, pure regression models can be converted to classifi-
cation models using pseudo-concentrations. Among the most often applied regression models are principal
component regression and PLS regression [46].

4.3 Evaluation procedures

A statistical model with perfect predictive performance is only possible if the training data is a complete rep-
resentation of the population under investigation. However, this is usually not the case in real-world tasks
and the data at hand is always a limited sampling of the population. The property of the population has to
be estimated from the (limited) sampled data. In terms of chemometrics, the estimation refers to constructing
a statistical model for a given classification or regression task. Due to the incomplete sampling, errors almost
always occur when predicting new data with a trained model. In extreme cases, the model may fit the training
data perfectly but cannot be generalized to unknown data. This is termed overfitting. To avoid overfitting, a
procedure is required to evaluate the generalization performance of the model before it can be used in practice.
To do so, the model is used to predict data that has not been used during model construction [37, 47]. The
performance of the prediction can be benchmarked by different metrics, as is described in the following.

For the evaluation of regression models the prediction performance is measured as differences between
the true and predicted values, for instance, the root-mean-squared-error of prediction (RMSEP; RMSEP =
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√ 1
𝑁

𝑁
∑
𝑖=1

( ̂𝑦𝑖 − 𝑦𝑖)
2) or the mean-squared-error of prediction (MSEP; MSEP = RMSEP2). To quantify the per-

formance of classification/clustering models, the metrics can be used are accuracy, sensitivity, specificity and
Cohen’s kappa. These values are derived from a confusion matrix, which is the combination of the predicted
and true group assignments (see Table 1). A model can be evaluated with a combination of multiple metrics
according to certain fusion regimes like the sum of ranking difference (SRD) [48]. This combination can provide
more stable and reliable model evaluations than using a single metric alone.

Table 1: Confusion table. The table compares the prediction against the correct group assignment. From this table a num-
ber of classification characteristics, like accuracy, sensitivity and specificity, can be calculated.

Predicted

P ~P
True P a b

~P c d

Accuracy = 100%× 𝑎+𝑏
𝑎+𝑏+𝑐+𝑑 , percentage of correctly classified samples.

Sensitivity = 100%× 𝑎
𝑎+𝑏 , percentage of true positive.

Specificity = 100%× 𝑑
𝑐+𝑑 , percentage of true negative.

𝜅 = Accuracy−𝑝𝑒
1−𝑝𝑒

, agreement between truth and prediction.

As shown in Figure 3, the model evaluation requires a prediction of new data that is independent of the
training data. This requires additional samples to be measured, which can be expensive, time-consuming, or
even impossible. A more practical solution is resampling, where the datasets for model training and prediction
are independently sampled from the accessible data. The most widely applied resampling regime is cross-
validation [49]. Thereby the accessible dataset is split into training and testing data, used for model training
and evaluation, respectively. The splitting procedure is repeated for several times to get a stable validation.
The results of the prediction over all splits are averaged to benchmark the generalization performance of the
statistical model. According to the data splitting scheme, cross-validation can be conducted in different ways,
including leave-p-out cross-validation, k-fold cross-validation, and Monte Carlo cross-validation [50]. A special
case of cross-validation is holdout validation, where the data split is done only once without repetition. Another
important resampling method is bootstrapping, which is a resampling procedure with replacement. No matter
how data split is performed, the proportional composition of classes (or concentrations) in every split should be
consistent to the composition of the population, because the constructed model can be influenced by the relative
compositions of different classes in the training data. One way to achieve this is the Latin-partition method [51].
Specifically, bootstrapping with Latin partition was reported, which constructs multiple Latin partitions with
a bootstrap. This allows getting the relation between the prediction and the composition of the training data as
well as the optimization of the statistical model [52, 53].

There are two issues extremely crucial to model evaluation [38, 39, 54]. The first issue is the independence
requirement between training and testing data. In practice, this is ensured by resampling the data on the highest
level of sampling hierarchy, which might be the biological replicate, cultivation, or patient. With k-fold cross-
validation, for example, the folds should be arranged according to the highest level of sampling hierarchy.
Otherwise, the information of testing data is implicitly used during model construction and the prediction on
the testing data does not reveal the true generalization performance. As a result, the statistical model is over-
estimated. In addition, the evaluation should be conducted involving both the dimension reduction and the
statistical model. This is especially important if a supervised dimension reduction is applied. In special cases,
if parameters of a pre-processing procedure are optimized according to the output of the statistical models, the
evaluation loop should include the pre-processing steps as well.

Noteworthy, it requires special attention when both the model selection and model evaluation are conducted
with cross-validation. In this case, a two-layer cross-validation is needed [39]. As shown in Figure 3, the dataset
is split into training (blue and green blocks) and testing data (red block) within the outer-layer cross-validation.
The testing data is taken aside and the training data is fed into the inner-layer cross-validation for model opti-
mization as described in Section 3.4. Thereafter the testing data is predicted with the optimized model, of which
the results are used to evaluate the performance of the model. The inner-layer and outer-layer cross-validation
are termed internal and external validation, respectively.
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5 New trends

As almost all applications of Raman spectroscopy are only possible, if an adequate data analysis pipeline is
utilized, the research area developing new analysis methods and tools is active. A full summary of trends is
beyond the scope of this chapter, but two topics, which emerged recently, should be summarized here. These
both topics are model transfer and data fusion. Model transfer is dealing with the use of models, which were
constructed based on training data different from the test data. Such a model transfer issue arises, if a chemo-
metric model should be utilized for diagnostic purposes and the device on which the test data are measured
in clinics is different compared to the device utilized for measuring the training data. This issue is important
because it is linked to real-world applications of Raman spectroscopy. The next active research area is related to
data fusion, where Raman spectra are computationally combined with other data types in order to extract more
information as it would be possible from the Raman spectra alone. In that manner, complementary information
to the information extracted from Raman spectra can be analyzed together with the Raman based information.

5.1 Model transfer

A well-known challenge in chemometrics is the substantially inferior prediction quality of a pre-trained chemo-
metric model if it is applied to newly measured data [55]. This issue gets more important if the new data is signif-
icantly different to training data. In Raman spectroscopy, such differences manifest itself as wavenumber shifts
and intensity variations (Figure 5a). One of the major reasons for such spectral deviations is the instrumental
change over-time or after replacement of a component. The wavenumber/intensity calibration (see Section 2)
helps to reduce such instrument induced spectral variations but cannot completely remove them. The remain-
ing spectral variations can still mask the spectral differences of interest and thus corrupt the prediction, which
is very common in biological studies. Besides the instrument variations, other experimental changes can also
disturb the reproducibility, for example, cultivation conditions cannot be exactly identical for all replicates and
differences over measurement of different replicates are resulting. These spectral variations cannot be tackled
with calibration at all. That is why an existent model cannot successfully predict the newly measured data. A
simple but labor-extensive solution is to train another model for this new data. However, this is not possible
if new training samples are inaccessible, which might be the case in disease diagnosis. Therefore, a method
is needed to enable the prediction of the new data based on the existent model. This is achieved with model
transfer approaches, as described in the following [14, 56, 57].

Figure 5: Overview of model transfer. (a) Training (primary) and testing (secondary) datasets can be significantly differ-
ent if they are measured from different replicates or on different devices. Hence the chemometric model constructed with
the primary dataset can fail to predict the secondary dataset. This can be tackled with model transfer approaches accord-
ing to two mechanisms: data based methods (b) and model based methods (c).

In the terminology of model transfer, the (old) training and the new data are termed primary and secondary
data, respectively. There are two types of model transfer approaches: data based (Figure 5b) and model based
methods (Figure 5c) [58]. In the former case, the primary and secondary data are transformed to make them
more similar. In the latter case, an existent model is updated to improve the prediction on the secondary data.
Model transfer can be applied in a supervised or an unsupervised manner. Unsupervised model transfer is
conducted without the knowledge of response variables (class information or concentration) of the secondary
data. For supervised model transfer, a few secondary samples with known responses are needed; but the re-
quired sample size is much smaller compared to the construction of a new model. Unsupervised methods do
not need the response information of the secondary data, making them superior to supervised model trans-
fer in the cases where the response information is not accessible. A typical example of this case is bio-medical
diagnostics, where the disease level of a new patient should be predicted and is unknown.
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Data based model transfer aims to remove the spectral variations between secondary and primary data.
Typically applied methods are Procrustes analysis and piecewise direct standardization (PDS) [59], where a
transformation matrix is calculated to map the secondary to the primary data. Other approaches include warp-
ing methods, which adjust the peak misalignment between primary and secondary data [60]. These methods
are typically conducted based on spectra of standard samples measured under primary and secondary condi-
tions. Then the resulting correction function is applied to the spectra of the secondary samples. The bottleneck
of these methods is that the standard and secondary samples have to be measured under identical conditions.
In addition, the correction function only corrects the instrumental deviations and cannot tackle disturbing ef-
fects like the variation of cultivation conditions. Hence the secondary and primary data of secondary samples
cannot be perfectly matched. Another option is to calculate the transformation matrix based on the secondary
samples itself. However, this works only if the samples for primary and secondary measurements share the
same chemical components. In classification and regression tasks, the samples belong to multiple classes or
feature different concentrations of their components. It is almost impossible to ensure that both the primary
and the secondary samples feature the same classes or identical concentrations. In this case, the transformation
matrix does not only model the undesired changes but also the spectral differences of interest. It is advisable
to calculate transformation matrix separately for each class or concentration, i. e. in a supervised manner.

Model based model transfer seeks for a compromise between the primary and secondary data. The first
scheme is to build a global statistical model involving experimental variables responsible for undesired spectral
changes [58]. This procedure requires to know and to include all potential influential experimental variables,
which makes it less feasible for model transfer. An alternative regime is to build a model on the primary data
with features robust to the experimental changes. In ref [61] the authors proposed a sample‐wise spectral multi-
variate calibration approach by penalizing and desensitizing features that strongly differ between the primary
and secondary data. This method is less powerful if the secondary conditions differ strongly from the primary
conditions. The third scheme is local modeling, where the model is built only with the primary samples that
are the nearest neighbors to the secondary data [62]. It is crucial in local modeling to determine the number of
nearest neighbors and the similarity metric to select the nearest neighbors. Another model transfer approach is
model augmentation. Thereby, the training dataset is enlarged with several additional secondary samples, the
so-called transfer samples [63].

So far model transfer has been mostly investigated for near-infrared spectroscopy and regression problems.
Model transfer of Raman spectroscopy and classification tasks is rather new and only a few studies exist. Re-
cently, a model transfer approach was developed for Raman spectroscopy using Tikhonov regularization based
partial least squares regression (TR-PLSR) [14]. However, the method does not work if the response variables of
the secondary data are unavailable. To deal with this issue, unsupervised model transfer approaches for Raman
spectroscopy were also developed recently [57].

5.2 Data fusion

In cases when the Raman data does not yield sufficient information, it can be complemented by additional
measured data. For example, if correlated imaging is performed, several types of spectroscopic or spectrometric
data are measured and can be combined. Another example is that beside the Raman spectra of the sample other
additional information can be used, like the patient’s laboratory values, gender, age, physical parameters, and
known medical conditions. These values can be used along with Raman spectra to improve the performance of
a chemometric model. Often the different data types feature different dynamic range, dimensionality, and the
number of observations per sample. Therefore, the question arises how different data types can be combined
[64]. This process of combining different types of data is called data fusion.

The data fusion can be performed on different levels [65] of the analysis pipeline (Figure 6). The combination
can be done on a low-level directly after the preprocessing, possibly even before the dimension reduction.
This data fusion scheme is called centralized data fusion. It is performed by merging the data from different
sources into a single data matrix with subsequent simultaneous analysis. However, dealing with different data
types within a low-level data fusion approach requires accounting for different scaling, dynamic range and
dimensionality of the data in order to balance the contributions of different data types against each other. To
account for these differences, it may be important to rescale the data before combining them [66].
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Figure 6: Schematic representation of data combination with a fusion center at different levels of the data analysis
pipeline. The low-level (centralized) data fusion is highlighted in blue color, and the high-level (distributed) data fusion is
highlighted in green color.

Figure 7: Workflow of wavenumber (a–b) and intensity calibration (c–d). (a) The relation between wavenumber and pixel
positions can change, leading to wavenumber misalignment between measured and theoretical Raman spectra. (b) The
wavenumber misalignment is corrected based on Raman spectra of a known standard material. (c) The intensity response
function of the device is calculated as the ratio between measured and theoretical emission of a known standard material.
(d) Intensity axis of measured Raman spectra is corrected by the calculated intensity response function.

Another possible data fusion scheme is a high-level data fusion, also called a distributed data fusion. In this
scheme, each data type is analyzed separately and the scores are combined at the final step of the analysis [67].
The advantage of the high-level data fusion is that it is computationally less costly and allows dealing with the
different data types in an easier manner.

Besides the low-level and high-level data fusion, a decentralized data fusion approach [68] or hierarchical
data fusion can be used. For example, in correlated imaging, the hierarchical data fusion allows using one
imaging technique for finding areas of the interest. The other imaging technique is then utilized to study these
regions [69, 70]. In that manner, deeper insights into the investigated areas can be gathered.

6 Summary: dos and don’ts in analyzing Raman spectra

In this section we would like to summarize the sections above. We would like to give the summary in terms
of a Dos and Don’ts list. In that manner, we tried to condense the content of the whole chapter into guidelines
and rules. In order to allow a further reading, the recommended practices discussed in the sections about data
pretreatment (Section 2), data preprocessing (Section 3) and models (Section 4) are marked in the table with a
respective chapter number in the parentheses.

Do’s Dont’s
Avoid fluorescence if possible (3)
Check instrumental drift every day before
measurement (2)
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Measure standard material for calibration every time
before measuring real samples (2)

Measure a spectrum of standard material for calibration
at different conditions (days) compared to real samples
(2)

Wavenumber calibration and/or intensity calibration (2)
Direct application of a model to data of another device
(2)

Model transfer between different devices/replicates (4) Model transfer between datasets measured from
different classes (4)

Apply baseline correction methods prior modeling (3)
Smoothing before SNIP baseline correction (3)
Normalization (after baseline correction) (3) Normalization before baseline correction (3)
Involve procedures to be optimized like dimension
reduction (pre-processing, if necessary) inside the CV
loop (4)

Perform dimension reduction outside of CV loop,
especially for supervised dimension reduction
approaches (4)

Evaluate the model with independent dataset (e. g.
external CV) (4)

Evaluate the model with data already used during
model construction/optimization (4)

Use data from the same sample (replicate) exclusively as
training or testing data (4)

Split the data into training and testing data regardless
of the replicate information (4)

Leave-one-sample (replicate)-out CV (4) Leave-one-spectrum-out CV (4)
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